The N-terminal domain of human hemokinin-1 influences functional selectivity property for tachykinin receptor neurokinin-1
Human hemokinin-1 (hHK-1) is a substance P-like tachykinin peptide preferentially expressed in non-neuronal tissues. It is involved in multiple physiological functions such as inflammation, hematopoietic cells development and vasodilatation via the interaction with tachykinin receptor neurokinin-1 (...
Saved in:
Published in | Biochemical pharmacology Vol. 81; no. 5; pp. 661 - 668 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Inc
01.03.2011
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Human hemokinin-1 (hHK-1) is a substance P-like tachykinin peptide preferentially expressed in non-neuronal tissues. It is involved in multiple physiological functions such as inflammation, hematopoietic cells development and vasodilatation via the interaction with tachykinin receptor neurokinin-1 (NK1). To further understand the intracellular signal transduction mechanism under such functional multiplicity, current study was focused on the differential activation of Gs and Gq pathways by hHK-1 and its C-terminal fragments, which is termed as functional selectivity. We demonstrated these hHK-1 and related peptide fragments can independently activate Gs and Gq pathways, showing a relative bias toward Gq over Gs pathway. The T1, K3 and Q6 of hHK-1 might play roles in the activation of adenylate cyclase mediated by Gs, while having negligible effect on Gq mediated intracellular calcium release. The stepwise truncation of N-terminal amino acid of hHK-1 caused gradual decrease in ERK1/2 phosphorylation level and NF-κB activity. However, it had little influence on the induction of NK1 receptor desensitization and internalization. Taken together these data support that hHK-1 and its C-terminal fragments are human NK1 receptor agonists with different functional selectivity properties and that such functional selectivity leads to differential activation of downstream signaling and receptor trafficking. |
---|---|
Bibliography: | http://dx.doi.org/10.1016/j.bcp.2010.12.007 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0006-2952 1873-2968 |
DOI: | 10.1016/j.bcp.2010.12.007 |