Utilizing Iron Ore Tailing as Cementitious Material for Eco-Friendly Design of Ultra-High Performance Concrete (UHPC)

In this research, iron ore tailing (IOT) is utilized as the cementitious material to develop an eco-friendly ultra-high performance concrete (UHPC). The UHPC mix is obtained according to the modified Andreasen and Andersen (MAA) packing model, and the applied dosage of IOT is 10%, 20%, and 30% (by w...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 14; no. 8; p. 1829
Main Authors Ling, Gang, Shui, Zhonghe, Gao, Xu, Sun, Tao, Yu, Rui, Li, Xiaosheng
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 07.04.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this research, iron ore tailing (IOT) is utilized as the cementitious material to develop an eco-friendly ultra-high performance concrete (UHPC). The UHPC mix is obtained according to the modified Andreasen and Andersen (MAA) packing model, and the applied dosage of IOT is 10%, 20%, and 30% (by weight), respectively. The calculated packing density of different mixtures is consistent with each other. Afterwards, the fresh and hardened performance of UHPC mixtures with IOT are evaluated. The results demonstrate that the workability of designed UHPC mixtures is increased with the incorporation of IOT. The heat flow at an early age of designed UHPC with IOT is attenuated, the compressive strength and auto shrinkage at an early age are consequently reduced. The addition of IOT promotes the development of long-term compressive strength and optimization of the pore structure, thus the durability of designed UHPC is still guaranteed. In addition, the ecological estimate results show that the utilization of IOT for the UHPC design can reduce the carbon emission significantly.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1996-1944
1996-1944
DOI:10.3390/ma14081829