Microsatellite variation in Drosophila melanogaster and Drosophila simulans: a reciprocal test of the ascertainment bias hypothesis

Interspecific comparisons of microsatellite loci have repeatedly shown that the loci are longer and more variable in the species from which they are derived (the focal species) than are homologous loci in other (nonfocal) species. There is debate as to whether this is due to directional evolution or...

Full description

Saved in:
Bibliographic Details
Published inMolecular biology and evolution Vol. 15; no. 12; pp. 1620 - 1636
Main Authors Hutter, C M, Schug, M D, Aquadro, C F
Format Journal Article
LanguageEnglish
Published United States 01.12.1998
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Interspecific comparisons of microsatellite loci have repeatedly shown that the loci are longer and more variable in the species from which they are derived (the focal species) than are homologous loci in other (nonfocal) species. There is debate as to whether this is due to directional evolution or to an ascertainment bias during the cloning and locus selection processes. This study tests these hypotheses by performing a reciprocal study. Eighteen perfect dinucleotide microsatellite loci identified from a Drosophila simulans library screen and 18 previously identified in an identical Drosophila melanogaster library screen were used to survey natural populations of each species. No difference between focal and nonfocal species was observed for mean PCR fragment length. However, heterozygosity and number of alleles were significantly higher in the focal species than in the nonfocal species. The most common allele in the Zimbabwe population of both species was sequenced for 31 of the 36 loci. The length of the longest stretch of perfect repeat units is, on average, longer in the focal species than in the non-focal species. There is a positive correlation between the length of the longest stretch of perfect repeats and heterozygosity. The difference in heterozygosity can thus be explained by a reduction in the length of the longest stretch of perfect repeats in the nonfocal species. Furthermore, flanking-sequence length difference was noted between the two species at 58% of the loci sequenced. These data do not support the predictions of the directional-evolution hypothesis; however, consistent with the ascertainment bias hypothesis, the lower variability in nonfocal species is an artifact of the microsatellite cloning and isolation process. Our results also suggest that the magnitude of ascertainment bias for repeat unit length is a function of the microsatellite size distribution in the genomes of different species.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0737-4038
1537-1719
DOI:10.1093/oxfordjournals.molbev.a025890