Oxygen consumption and gait dynamics in transfemoral bone-anchored prosthesis users compared to socket-prosthesis users: A cross-sectional study

A transfemoral bone-anchored prosthesis (BAP) is an alternative for the conventional socket-suspended prosthesis (SSP) in persons suffering from socket-related problems. In these persons, it has been demonstrated to reduce oxygen consumption during walking, which could be related to centre of mass (...

Full description

Saved in:
Bibliographic Details
Published inGait & posture Vol. 103; pp. 12 - 18
Main Authors Kooiman, Vera, Haket, Lisanne, Verdonschot, Nico, Leijendekkers, Ruud, Weerdesteyn, Vivian
Format Journal Article
LanguageEnglish
Published England Elsevier B.V 01.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A transfemoral bone-anchored prosthesis (BAP) is an alternative for the conventional socket-suspended prosthesis (SSP) in persons suffering from socket-related problems. In these persons, it has been demonstrated to reduce oxygen consumption during walking, which could be related to centre of mass (CoM) and trunk dynamics. However, it remains uncertain whether the same comparative findings are found in SSP-users without any socket-related problems. Do oxygen consumption, CoM and trunk dynamics during walking differ between satisfied transfemoral SSP- and BAP-users and able-bodied individuals (AB); and are CoM and trunk dynamics and pistoning potential determinants of oxygen consumption? Oxygen consumption was measured while participants walked on a treadmill at preferred speed, 30 % slower, and 30 % faster. At preferred speed, we also evaluated CoM deviation, root-mean-square values (RMS) of mediolateral (ML) CoM and trunk excursions, and pistoning. In the prosthetic users, we evaluated whether oxygen consumption, CoM and trunk dynamics, and pistoning were associated. We included BAP-users (n = 10), SSP-users (n = 10), and AB (n = 10). SSP-users demonstrated higher oxygen consumption, CoM and trunk RMS ML in comparison to AB during walking. BAP-users showed intermediate results between SSP-users and AB, yet not significantly different from either group. Greater CoM and trunk excursions were associated with higher oxygen consumption; in the SSP-users a greater degree of pistoning, in turn, was found to associate with larger trunk RMS ML. Our results indicate that satisfied SSP-users have increased oxygen consumption compared to AB subjects and use compensatory movements during walking. An assessment of CoM and trunk dynamics, and pistoning during walking may be considered for evaluating whether an individual SSP-user could possibly benefit from a BAP, in addition to the currently used functional tests for evaluating eligibility. This might lead to a larger group of persons with a transfemoral SSP benefiting from this technology. •Highly-active socket-suspended prosthesis users have increased metabolic cost.•Bone-anchored prosthesis users show intermediate results.•Greater compensatory movements are associated with higher metabolic cost.•Greater degree of pistoning is associate to larger trunk movements.•Regard pistoning and trunk dynamics criteria for bone-anchored prosthesis provision.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0966-6362
1879-2219
1879-2219
DOI:10.1016/j.gaitpost.2023.04.008