Passive thermal management using metal foam saturated with phase change material in a heat sink

An electronic passive thermal management system was designed. The system featured a hybrid heat sink with parallel fins sintered onto its top and copper metal foam–paraffin composite saturated in its hollow basement. The other two types of basement patterns for thermal dissipation were also employed...

Full description

Saved in:
Bibliographic Details
Published inInternational communications in heat and mass transfer Vol. 39; no. 10; pp. 1546 - 1549
Main Authors Qu, Z.G., Li, W.Q., Wang, J.L., Tao, W.Q.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.12.2012
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An electronic passive thermal management system was designed. The system featured a hybrid heat sink with parallel fins sintered onto its top and copper metal foam–paraffin composite saturated in its hollow basement. The other two types of basement patterns for thermal dissipation were also employed: (1) a hollow basement saturated with pure paraffin; (2) a solid copper basement. The experimental results showed that the use of the copper metal foam reduced the surface temperature and the time required to reach the melting point of the paraffin. Lower surface temperature can be achieved by either reducing foam porosity or foam pore density. During the melting process, temperature increased more linearly for the foam–PCM composite than for the case of pure paraffin since the enhancement in thermal conduction caused by the metal foam exceeded the level of its suppression to natural convection of melted paraffin.
AbstractList An electronic passive thermal management system was designed. The system featured a hybrid heat sink with parallel fins sintered onto its top and copper metal foamaparaffin composite saturated in its hollow basement. The other two types of basement patterns for thermal dissipation were also employed: (1) a hollow basement saturated with pure paraffin; (2) a solid copper basement. The experimental results showed that the use of the copper metal foam reduced the surface temperature and the time required to reach the melting point of the paraffin. Lower surface temperature can be achieved by either reducing foam porosity or foam pore density. During the melting process, temperature increased more linearly for the foamaPCM composite than for the case of pure paraffin since the enhancement in thermal conduction caused by the metal foam exceeded the level of its suppression to natural convection of melted paraffin.
An electronic passive thermal management system was designed. The system featured a hybrid heat sink with parallel fins sintered onto its top and copper metal foam–paraffin composite saturated in its hollow basement. The other two types of basement patterns for thermal dissipation were also employed: (1) a hollow basement saturated with pure paraffin; (2) a solid copper basement. The experimental results showed that the use of the copper metal foam reduced the surface temperature and the time required to reach the melting point of the paraffin. Lower surface temperature can be achieved by either reducing foam porosity or foam pore density. During the melting process, temperature increased more linearly for the foam–PCM composite than for the case of pure paraffin since the enhancement in thermal conduction caused by the metal foam exceeded the level of its suppression to natural convection of melted paraffin.
Author Tao, W.Q.
Qu, Z.G.
Wang, J.L.
Li, W.Q.
Author_xml – sequence: 1
  givenname: Z.G.
  surname: Qu
  fullname: Qu, Z.G.
  email: zgqu@mail.xjtu.edu.cn
– sequence: 2
  givenname: W.Q.
  surname: Li
  fullname: Li, W.Q.
– sequence: 3
  givenname: J.L.
  surname: Wang
  fullname: Wang, J.L.
– sequence: 4
  givenname: W.Q.
  surname: Tao
  fullname: Tao, W.Q.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26731869$$DView record in Pascal Francis
BookMark eNqNkUuP1DAQhC20SMwu_AdfkPaS0HYejm-gFU-tBAc4Wz12Z-IhcQbbs4h_j6NZceEAp5ZaX1W1uq7ZVVgDMXYroBYg-lfH2tuJMC-YUo4Y0kixliBkDboGEE_YTgxKVyDUcMV2oJquErppnrHrlI5QiEEMO2a-FL1_IJ4nigvOfMGAB1ooZH5OPhz4QrmsxxUXnjCfI2Zy_KfPEz9NmIjbCcOBii5T9IX0gSPfLuNF_v05ezrinOjF47xh3969_Xr3obr__P7j3Zv7yrZK5IpQatUBEjk1ImCD-56cQ6cGCxL3zV53fScdjK0atYa-7wgsWakcNG7UzQ27vfie4vrjTCmbxSdL84yB1nMyQrWtktDK_t-oHJq-UyA219cX1MY1pUijOUW_YPxlBJitBnM0f9dgthoMaFOeXCxePqZhsjiPhbE-_fGRvWrE0G9Rny4clS89-OKSrKdgyflINhu3-v8P_Q0Kea2p
CODEN IHMTDL
CitedBy_id crossref_primary_10_1016_j_energy_2018_09_147
crossref_primary_10_1016_j_est_2022_104650
crossref_primary_10_1016_j_icheatmasstransfer_2021_105127
crossref_primary_10_1016_j_rser_2023_113196
crossref_primary_10_1016_j_est_2022_105185
crossref_primary_10_1016_j_est_2024_110813
crossref_primary_10_1016_j_icheatmasstransfer_2021_105407
crossref_primary_10_1016_j_rser_2022_112783
crossref_primary_10_1115_1_4048861
crossref_primary_10_1016_j_carbon_2016_01_063
crossref_primary_10_1016_j_ijheatmasstransfer_2014_09_071
crossref_primary_10_1016_j_enconman_2017_12_002
crossref_primary_10_1016_j_ijheatmasstransfer_2017_10_008
crossref_primary_10_1016_j_ijheatmasstransfer_2019_02_001
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120454
crossref_primary_10_1016_j_applthermaleng_2017_09_047
crossref_primary_10_1016_j_est_2016_12_002
crossref_primary_10_1016_j_apenergy_2016_07_094
crossref_primary_10_1016_j_ijthermalsci_2020_106525
crossref_primary_10_1016_j_applthermaleng_2021_117436
crossref_primary_10_1016_j_ijft_2023_100374
crossref_primary_10_1016_j_est_2023_109380
crossref_primary_10_1002_er_8037
crossref_primary_10_1016_j_icheatmasstransfer_2017_07_001
crossref_primary_10_1016_j_tsep_2022_101542
crossref_primary_10_1016_j_ijft_2023_100419
crossref_primary_10_1016_j_est_2023_108320
crossref_primary_10_1016_j_icheatmasstransfer_2023_106690
crossref_primary_10_1016_j_rser_2015_12_238
crossref_primary_10_1016_j_csite_2020_100742
crossref_primary_10_1016_j_ijheatmasstransfer_2019_118852
crossref_primary_10_1016_j_ijheatmasstransfer_2016_03_068
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122257
crossref_primary_10_1016_j_egypro_2017_09_502
crossref_primary_10_1016_j_est_2022_106496
crossref_primary_10_1016_j_applthermaleng_2022_118695
crossref_primary_10_1002_adem_201700766
crossref_primary_10_1016_j_buildenv_2017_10_035
crossref_primary_10_1016_j_applthermaleng_2015_12_056
crossref_primary_10_1016_j_applthermaleng_2016_02_116
crossref_primary_10_1016_j_applthermaleng_2020_115303
crossref_primary_10_1002_er_6404
crossref_primary_10_1016_j_enconman_2018_01_056
crossref_primary_10_1016_j_tsep_2022_101536
crossref_primary_10_1016_j_rser_2021_111919
crossref_primary_10_1016_j_ijthermalsci_2021_107176
crossref_primary_10_1088_1742_6596_2116_1_012077
crossref_primary_10_1016_j_energy_2014_04_071
crossref_primary_10_1088_2515_7655_ab2f1e
crossref_primary_10_1016_j_enbuild_2020_110237
crossref_primary_10_1007_s11630_024_1925_0
crossref_primary_10_1016_j_renene_2019_07_115
crossref_primary_10_1016_j_ijheatmasstransfer_2017_07_056
crossref_primary_10_1016_j_renene_2023_05_021
crossref_primary_10_1016_j_ijft_2022_100216
crossref_primary_10_1016_j_ijheatmasstransfer_2017_10_099
crossref_primary_10_1016_j_jmrt_2024_01_193
crossref_primary_10_1016_j_est_2024_111376
crossref_primary_10_1016_j_applthermaleng_2018_12_024
crossref_primary_10_1016_j_icheatmasstransfer_2022_106052
crossref_primary_10_1016_j_csite_2021_100944
crossref_primary_10_1016_j_icheatmasstransfer_2023_107169
crossref_primary_10_1016_j_ijrefrig_2019_06_018
crossref_primary_10_1016_j_rser_2013_12_017
crossref_primary_10_3390_en10070902
crossref_primary_10_1016_j_jcis_2022_09_032
crossref_primary_10_1016_j_icheatmasstransfer_2023_107225
crossref_primary_10_1051_matecconf_20141803009
crossref_primary_10_1038_s41598_021_97165_y
crossref_primary_10_1016_j_colsurfa_2022_129516
crossref_primary_10_1016_j_est_2022_106074
crossref_primary_10_1016_j_est_2022_106591
crossref_primary_10_3390_mi12030265
crossref_primary_10_1016_j_applthermaleng_2013_04_022
crossref_primary_10_1016_j_applthermaleng_2022_118153
crossref_primary_10_1021_acsomega_2c00623
crossref_primary_10_1016_j_est_2020_101867
crossref_primary_10_1016_j_solener_2017_07_010
crossref_primary_10_3390_en14051389
crossref_primary_10_1016_j_applthermaleng_2022_118839
crossref_primary_10_1016_j_enconman_2018_10_037
crossref_primary_10_1016_j_ijheatmasstransfer_2016_06_066
crossref_primary_10_1016_j_enconman_2019_112287
crossref_primary_10_1016_j_applthermaleng_2017_10_030
crossref_primary_10_1016_j_est_2020_102166
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123651
crossref_primary_10_1016_j_seta_2022_102234
crossref_primary_10_1016_j_renene_2023_119719
crossref_primary_10_1007_s10973_020_09508_y
crossref_primary_10_1016_j_apenergy_2013_04_059
crossref_primary_10_1016_j_solener_2021_09_055
crossref_primary_10_1080_01457632_2019_1685241
crossref_primary_10_1016_j_ast_2013_08_013
crossref_primary_10_1016_j_solmat_2015_12_041
crossref_primary_10_1115_1_4029970
crossref_primary_10_1007_s12209_020_00270_8
crossref_primary_10_1016_j_applthermaleng_2020_115504
crossref_primary_10_1080_10407782_2023_2279290
crossref_primary_10_1016_j_est_2021_103224
crossref_primary_10_1016_j_icheatmasstransfer_2022_106365
crossref_primary_10_1115_1_4056543
crossref_primary_10_1016_j_apenergy_2020_115353
crossref_primary_10_1016_j_renene_2022_04_084
crossref_primary_10_1016_j_applthermaleng_2016_11_111
crossref_primary_10_1088_1742_6596_2766_1_012229
crossref_primary_10_1016_j_icheatmasstransfer_2022_106407
crossref_primary_10_1016_j_ijheatmasstransfer_2015_09_033
crossref_primary_10_1002_adem_202301704
crossref_primary_10_1016_j_tsep_2023_102311
crossref_primary_10_1016_j_ijhydene_2017_12_047
crossref_primary_10_1016_j_est_2019_101179
crossref_primary_10_1039_D0TA04626D
crossref_primary_10_1016_j_applthermaleng_2023_120584
crossref_primary_10_1016_j_ijheatmasstransfer_2016_04_047
crossref_primary_10_1016_j_tca_2019_02_013
Cites_doi 10.1115/1.2818764
10.1115/1.1287793
10.1016/S0009-2509(02)00166-5
10.1016/j.rser.2009.06.024
10.1063/1.2802183
10.1016/j.applthermaleng.2011.11.001
10.1016/j.rser.2010.08.007
10.1016/j.renene.2011.04.002
10.1016/j.solmat.2008.09.010
10.1016/j.scriptamat.2006.07.050
10.1016/j.rser.2009.10.015
10.1115/1.2912185
10.1016/j.ijthermalsci.2007.07.016
10.1016/S0017-9310(00)00123-X
10.1016/j.ijheatmasstransfer.2005.01.032
ContentType Journal Article
Copyright 2012 Elsevier Ltd
2014 INIST-CNRS
Copyright_xml – notice: 2012 Elsevier Ltd
– notice: 2014 INIST-CNRS
DBID IQODW
AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.icheatmasstransfer.2012.09.001
DatabaseName Pascal-Francis
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
Applied Sciences
EISSN 1879-0178
EndPage 1549
ExternalDocumentID 10_1016_j_icheatmasstransfer_2012_09_001
26731869
S0735193312002138
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SST
SSZ
T5K
WUQ
XPP
~G-
08R
AALMO
ABFLS
ABPIF
ADALY
IPNFZ
IQODW
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c471t-ea29750aeed7fa0a3ab6eddad78c02ab3b95652d0f47f990665e0cec27d03df93
IEDL.DBID AIKHN
ISSN 0735-1933
IngestDate Fri Oct 25 02:55:54 EDT 2024
Fri Oct 25 22:13:00 EDT 2024
Thu Sep 26 19:41:03 EDT 2024
Thu Nov 24 18:30:00 EST 2022
Fri Feb 23 02:27:13 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Metal foams
Thermal management
Phase change material
Heat sink
Electronic component
Metal foam
Cooling system
Temperature control
PCM material
Passive system
Copper
Experimental study
Heat transfer
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c471t-ea29750aeed7fa0a3ab6eddad78c02ab3b95652d0f47f990665e0cec27d03df93
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1283657019
PQPubID 23500
PageCount 4
ParticipantIDs proquest_miscellaneous_1744720426
proquest_miscellaneous_1283657019
crossref_primary_10_1016_j_icheatmasstransfer_2012_09_001
pascalfrancis_primary_26731869
elsevier_sciencedirect_doi_10_1016_j_icheatmasstransfer_2012_09_001
PublicationCentury 2000
PublicationDate 2012-12-01
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle International communications in heat and mass transfer
PublicationYear 2012
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Hong, Herling (bb0060) 2006; 55
Calmidi, Mahajan (bb0075) 2000; 122
Agyenim, Hewitt, Eames, Smyth (bb0005) 2010; 14
Jegadheeswaran, Pohekar (bb0020) 2009; 13
Boomsma, Poulikakos (bb0065) 2001; 44
Fourie, Du Plessis (bb0070) 2002; 57
Li, Qu, He, Tao (bb0010) 2012; 37
Fan, Khodadadi (bb0015) 2011; 15
Wang, Yap, Mujumdar (bb0030) 2008; 47
Lafdi, Mesalhy, Elgafy (bb0055) 2008; 130
Akhilesh, Narasimhan, Balaji (bb0025) 2005; 48
Weinstein, Kopec, Fleischer, D'Addio, Bessel (bb0045) 2008; 130
Kim, Drzal (bb0040) 2009; 93
Zhang, Zhao (bb0035) 2011; 36
Lafdi, Mesalhy, Shaikh (bb0050) 2007; 102
Hong (10.1016/j.icheatmasstransfer.2012.09.001_bb0060) 2006; 55
Agyenim (10.1016/j.icheatmasstransfer.2012.09.001_bb0005) 2010; 14
Fourie (10.1016/j.icheatmasstransfer.2012.09.001_bb0070) 2002; 57
Calmidi (10.1016/j.icheatmasstransfer.2012.09.001_bb0075) 2000; 122
Kim (10.1016/j.icheatmasstransfer.2012.09.001_bb0040) 2009; 93
Boomsma (10.1016/j.icheatmasstransfer.2012.09.001_bb0065) 2001; 44
Jegadheeswaran (10.1016/j.icheatmasstransfer.2012.09.001_bb0020) 2009; 13
Weinstein (10.1016/j.icheatmasstransfer.2012.09.001_bb0045) 2008; 130
Akhilesh (10.1016/j.icheatmasstransfer.2012.09.001_bb0025) 2005; 48
Li (10.1016/j.icheatmasstransfer.2012.09.001_bb0010) 2012; 37
Fan (10.1016/j.icheatmasstransfer.2012.09.001_bb0015) 2011; 15
Wang (10.1016/j.icheatmasstransfer.2012.09.001_bb0030) 2008; 47
Lafdi (10.1016/j.icheatmasstransfer.2012.09.001_bb0050) 2007; 102
Lafdi (10.1016/j.icheatmasstransfer.2012.09.001_bb0055) 2008; 130
Zhang (10.1016/j.icheatmasstransfer.2012.09.001_bb0035) 2011; 36
References_xml – volume: 14
  start-page: 615
  year: 2010
  end-page: 628
  ident: bb0005
  article-title: A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)
  publication-title: Renewable and Sustainable Energy Reviews
  contributor:
    fullname: Smyth
– volume: 122
  start-page: 557
  year: 2000
  end-page: 565
  ident: bb0075
  article-title: Forced convection in high porosity metal foams
  publication-title: Journal of Heat Transfer
  contributor:
    fullname: Mahajan
– volume: 15
  start-page: 24
  year: 2011
  end-page: 46
  ident: bb0015
  article-title: Thermal conductivity enhancement of phase change materials for thermal energy storage: a review
  publication-title: Renewable and Sustainable Energy Reviews
  contributor:
    fullname: Khodadadi
– volume: 55
  start-page: 887
  year: 2006
  end-page: 890
  ident: bb0060
  article-title: Open-cell aluminum foams filled with phase change materials as compact heat sinks
  publication-title: Scripta Materialia
  contributor:
    fullname: Herling
– volume: 13
  start-page: 2225
  year: 2009
  end-page: 2244
  ident: bb0020
  article-title: Performance enhancement in latent heat thermal storage system: a review
  publication-title: Renewable and Sustainable Energy Reviews
  contributor:
    fullname: Pohekar
– volume: 130
  start-page: 0210041.1
  year: 2008
  end-page: 0210041.8
  ident: bb0055
  article-title: Merits of employing foam encapsulated phase change materials for pulsed power electronics cooling applications
  publication-title: Journal of Electronic Packaging
  contributor:
    fullname: Elgafy
– volume: 44
  start-page: 827
  year: 2001
  end-page: 836
  ident: bb0065
  article-title: On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam
  publication-title: International Journal of Heat and Mass Transfer
  contributor:
    fullname: Poulikakos
– volume: 130
  start-page: 0424051.1
  year: 2008
  end-page: 0424051.8
  ident: bb0045
  article-title: The experimental exploration of embedding phase change materials with graphite nanofibers for the thermal management of electronics
  publication-title: Journal of Heat Transfer
  contributor:
    fullname: Bessel
– volume: 102
  start-page: 083549.1
  year: 2007
  end-page: 083549.6
  ident: bb0050
  article-title: Experimental study on the influence of foam porosity and pore size on the melting of phase change materials
  publication-title: Journal of Applied Physics
  contributor:
    fullname: Shaikh
– volume: 93
  start-page: 136
  year: 2009
  end-page: 142
  ident: bb0040
  article-title: High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets
  publication-title: Solar Energy Materials and Solar Cells
  contributor:
    fullname: Drzal
– volume: 48
  start-page: 2759
  year: 2005
  end-page: 2770
  ident: bb0025
  article-title: Method to improve geometry for heat transfer enhancement in PCM composite heat sinks
  publication-title: International Journal of Heat and Mass Transfer
  contributor:
    fullname: Balaji
– volume: 36
  start-page: 2959
  year: 2011
  end-page: 2966
  ident: bb0035
  article-title: Thermal and rheological properties of microencapsulated phase change materials
  publication-title: Renewable Energy
  contributor:
    fullname: Zhao
– volume: 37
  start-page: 1
  year: 2012
  end-page: 9
  ident: bb0010
  article-title: Experimental and numerical studies on melting phase change heat transfer in open-cell metallic foams filled with paraffin
  publication-title: Applied Thermal Engineering
  contributor:
    fullname: Tao
– volume: 57
  start-page: 2781
  year: 2002
  end-page: 2789
  ident: bb0070
  article-title: Pressure drop modeling in cellular metallic foams
  publication-title: Chemical Engineering Science
  contributor:
    fullname: Du Plessis
– volume: 47
  start-page: 1055
  year: 2008
  end-page: 1068
  ident: bb0030
  article-title: A parametric study of phase change material (PCM)-based heat sinks
  publication-title: International Journal of Thermal Sciences
  contributor:
    fullname: Mujumdar
– volume: 130
  start-page: 0424051.1
  issue: 4
  year: 2008
  ident: 10.1016/j.icheatmasstransfer.2012.09.001_bb0045
  article-title: The experimental exploration of embedding phase change materials with graphite nanofibers for the thermal management of electronics
  publication-title: Journal of Heat Transfer
  doi: 10.1115/1.2818764
  contributor:
    fullname: Weinstein
– volume: 122
  start-page: 557
  issue: 3
  year: 2000
  ident: 10.1016/j.icheatmasstransfer.2012.09.001_bb0075
  article-title: Forced convection in high porosity metal foams
  publication-title: Journal of Heat Transfer
  doi: 10.1115/1.1287793
  contributor:
    fullname: Calmidi
– volume: 57
  start-page: 2781
  issue: 14
  year: 2002
  ident: 10.1016/j.icheatmasstransfer.2012.09.001_bb0070
  article-title: Pressure drop modeling in cellular metallic foams
  publication-title: Chemical Engineering Science
  doi: 10.1016/S0009-2509(02)00166-5
  contributor:
    fullname: Fourie
– volume: 13
  start-page: 2225
  issue: 9
  year: 2009
  ident: 10.1016/j.icheatmasstransfer.2012.09.001_bb0020
  article-title: Performance enhancement in latent heat thermal storage system: a review
  publication-title: Renewable and Sustainable Energy Reviews
  doi: 10.1016/j.rser.2009.06.024
  contributor:
    fullname: Jegadheeswaran
– volume: 102
  start-page: 083549.1
  issue: 8
  year: 2007
  ident: 10.1016/j.icheatmasstransfer.2012.09.001_bb0050
  article-title: Experimental study on the influence of foam porosity and pore size on the melting of phase change materials
  publication-title: Journal of Applied Physics
  doi: 10.1063/1.2802183
  contributor:
    fullname: Lafdi
– volume: 37
  start-page: 1
  year: 2012
  ident: 10.1016/j.icheatmasstransfer.2012.09.001_bb0010
  article-title: Experimental and numerical studies on melting phase change heat transfer in open-cell metallic foams filled with paraffin
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2011.11.001
  contributor:
    fullname: Li
– volume: 15
  start-page: 24
  issue: 1
  year: 2011
  ident: 10.1016/j.icheatmasstransfer.2012.09.001_bb0015
  article-title: Thermal conductivity enhancement of phase change materials for thermal energy storage: a review
  publication-title: Renewable and Sustainable Energy Reviews
  doi: 10.1016/j.rser.2010.08.007
  contributor:
    fullname: Fan
– volume: 36
  start-page: 2959
  issue: 11
  year: 2011
  ident: 10.1016/j.icheatmasstransfer.2012.09.001_bb0035
  article-title: Thermal and rheological properties of microencapsulated phase change materials
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2011.04.002
  contributor:
    fullname: Zhang
– volume: 93
  start-page: 136
  issue: 1
  year: 2009
  ident: 10.1016/j.icheatmasstransfer.2012.09.001_bb0040
  article-title: High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets
  publication-title: Solar Energy Materials and Solar Cells
  doi: 10.1016/j.solmat.2008.09.010
  contributor:
    fullname: Kim
– volume: 55
  start-page: 887
  issue: 10
  year: 2006
  ident: 10.1016/j.icheatmasstransfer.2012.09.001_bb0060
  article-title: Open-cell aluminum foams filled with phase change materials as compact heat sinks
  publication-title: Scripta Materialia
  doi: 10.1016/j.scriptamat.2006.07.050
  contributor:
    fullname: Hong
– volume: 14
  start-page: 615
  issue: 2
  year: 2010
  ident: 10.1016/j.icheatmasstransfer.2012.09.001_bb0005
  article-title: A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)
  publication-title: Renewable and Sustainable Energy Reviews
  doi: 10.1016/j.rser.2009.10.015
  contributor:
    fullname: Agyenim
– volume: 130
  start-page: 0210041.1
  issue: 2
  year: 2008
  ident: 10.1016/j.icheatmasstransfer.2012.09.001_bb0055
  article-title: Merits of employing foam encapsulated phase change materials for pulsed power electronics cooling applications
  publication-title: Journal of Electronic Packaging
  doi: 10.1115/1.2912185
  contributor:
    fullname: Lafdi
– volume: 47
  start-page: 1055
  issue: 8
  year: 2008
  ident: 10.1016/j.icheatmasstransfer.2012.09.001_bb0030
  article-title: A parametric study of phase change material (PCM)-based heat sinks
  publication-title: International Journal of Thermal Sciences
  doi: 10.1016/j.ijthermalsci.2007.07.016
  contributor:
    fullname: Wang
– volume: 44
  start-page: 827
  issue: 4
  year: 2001
  ident: 10.1016/j.icheatmasstransfer.2012.09.001_bb0065
  article-title: On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/S0017-9310(00)00123-X
  contributor:
    fullname: Boomsma
– volume: 48
  start-page: 2759
  issue: 13
  year: 2005
  ident: 10.1016/j.icheatmasstransfer.2012.09.001_bb0025
  article-title: Method to improve geometry for heat transfer enhancement in PCM composite heat sinks
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2005.01.032
  contributor:
    fullname: Akhilesh
SSID ssj0001818
Score 2.4234912
Snippet An electronic passive thermal management system was designed. The system featured a hybrid heat sink with parallel fins sintered onto its top and copper metal...
SourceID proquest
crossref
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 1546
SubjectTerms Applied sciences
Basements
Copper
Design. Technologies. Operation analysis. Testing
Electronics
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Foams
Heat sink
Integrated circuits
Metal foams
Paraffins
Phase change material
Porosity
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Surface temperature
Thermal management
Transport and storage of energy
Title Passive thermal management using metal foam saturated with phase change material in a heat sink
URI https://dx.doi.org/10.1016/j.icheatmasstransfer.2012.09.001
https://search.proquest.com/docview/1283657019
https://search.proquest.com/docview/1744720426
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ra9RAEB7aK0pFRKvFs_VYwQdf4u1lN7vJYzksp2IRtNC3ZbPZrackd3jpq7_dmU1ythQLgo8JO2GyMzvzZfPtDMBrK5wTKuhEqZwnMtMuKRHEJSHNLRel5yHW7vx0phbn8sNFdrED8-EsDNEq-9jfxfQYrfs70342p-vlcvoFnZPgh5hFnoHId2EP01Gaj2Dv5P3Hxdk2IGMSiwEZxyckcB_e_KF5EeHStjUi1TYiRU9FQmmDMNax_Fu2eri2G5zD0DW_uBXHY3I6fQyPelTJTjrFn8CObw7gwbVagwdwL3I93eYpmM-oBgY5RtivRrF6S4FhRIO_ZLVHSM7CytZsQ4U_EY9WjHZs2fobZj3WnRZGuTb6L1s2zDJ6QYbiP57B-em7r_NF0vdZSBympjbxlo7XcovpUgfLrbCl8lVlK507ntpSlPgRlaUVD1IHzF5KZZ4771JdcVGFQhzCqFk1_jmwUhZOi1LazGVSZ9LOZIrLvpLeBhFEMYZimE-z7sppmIFn9t3ctoUhWxheEPVuDPPBAOaGixiM_v_wlMkN223VSJUW1J9rDK8GYxpcavT_xDZ-dbUx6FuCmEKzu8ZoKanvT6pe_Bd1j2CfrjoCzTGM2p9X_iXCoLacwO7bX7NJ7-y_AeIhDIs
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swED66lv0oY3TdytJtnQZ72IuJYslS_FjCSrq2YdAW-iZkWdqyYScs7v_fO9lOW8oGg73aOnPWne4-y5_uAD5Z4ZxQQSdKjXkiM-2SAkFcEtKx5aLwPMTanWczNb2UX6-yqw2Y9GdhiFbZxf42psdo3V0ZdrM5XM7nw3N0ToIfYhR5BmL8CLYQDeS4OrcOj0-ms3VAxiQWAzKOT0jgCXy-pXkR4dI2FSLVJiJFT0VCaYMw1rH8U7Z6vrQrnMPQNr94EMdjcjragRcdqmSHreIvYcPXu7B9p9bgLjyOXE-3egXmG6qBQY4R9qtQrFpTYBjR4L-zyiMkZ2FhK7aiwp-IR0tGO7Zs-QOzHmtPC6NcE_2XzWtmGb0gQ_Ffr-Hy6MvFZJp0fRYSh6mpSbyl47XcYrrUwXIrbKF8WdpSjx1PbSEK_IjK0pIHqQNmL6Uyz513qS65KEMu9mCzXtT-DbBC5k6LQtrMZVJn0o5kisu-lN4GEUQ-gLyfT7Nsy2mYnmf20zy0hSFbGJ4T9W4Ak94A5p6LGIz-__CUg3u2W6uRKi2oP9cAPvbGNLjU6P-Jrf3iemUwlQtiCo3-NkZLSX1_UrX_X9T9AE-nF2en5vR4dvIWntGdlkzzDjab39f-PUKipjjoXP4GXpUOfw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Passive+thermal+management+using+metal+foam+saturated+with+phase+change+material+in+a+heat+sink&rft.jtitle=International+communications+in+heat+and+mass+transfer&rft.au=Qu%2C+Z.G.&rft.au=Li%2C+W.Q.&rft.au=Wang%2C+J.L.&rft.au=Tao%2C+W.Q.&rft.date=2012-12-01&rft.pub=Elsevier+Ltd&rft.issn=0735-1933&rft.eissn=1879-0178&rft.volume=39&rft.issue=10&rft.spage=1546&rft.epage=1549&rft_id=info:doi/10.1016%2Fj.icheatmasstransfer.2012.09.001&rft.externalDocID=S0735193312002138
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0735-1933&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0735-1933&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0735-1933&client=summon