Passive thermal management using metal foam saturated with phase change material in a heat sink
An electronic passive thermal management system was designed. The system featured a hybrid heat sink with parallel fins sintered onto its top and copper metal foam–paraffin composite saturated in its hollow basement. The other two types of basement patterns for thermal dissipation were also employed...
Saved in:
Published in | International communications in heat and mass transfer Vol. 39; no. 10; pp. 1546 - 1549 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.12.2012
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An electronic passive thermal management system was designed. The system featured a hybrid heat sink with parallel fins sintered onto its top and copper metal foam–paraffin composite saturated in its hollow basement. The other two types of basement patterns for thermal dissipation were also employed: (1) a hollow basement saturated with pure paraffin; (2) a solid copper basement. The experimental results showed that the use of the copper metal foam reduced the surface temperature and the time required to reach the melting point of the paraffin. Lower surface temperature can be achieved by either reducing foam porosity or foam pore density. During the melting process, temperature increased more linearly for the foam–PCM composite than for the case of pure paraffin since the enhancement in thermal conduction caused by the metal foam exceeded the level of its suppression to natural convection of melted paraffin. |
---|---|
AbstractList | An electronic passive thermal management system was designed. The system featured a hybrid heat sink with parallel fins sintered onto its top and copper metal foamaparaffin composite saturated in its hollow basement. The other two types of basement patterns for thermal dissipation were also employed: (1) a hollow basement saturated with pure paraffin; (2) a solid copper basement. The experimental results showed that the use of the copper metal foam reduced the surface temperature and the time required to reach the melting point of the paraffin. Lower surface temperature can be achieved by either reducing foam porosity or foam pore density. During the melting process, temperature increased more linearly for the foamaPCM composite than for the case of pure paraffin since the enhancement in thermal conduction caused by the metal foam exceeded the level of its suppression to natural convection of melted paraffin. An electronic passive thermal management system was designed. The system featured a hybrid heat sink with parallel fins sintered onto its top and copper metal foam–paraffin composite saturated in its hollow basement. The other two types of basement patterns for thermal dissipation were also employed: (1) a hollow basement saturated with pure paraffin; (2) a solid copper basement. The experimental results showed that the use of the copper metal foam reduced the surface temperature and the time required to reach the melting point of the paraffin. Lower surface temperature can be achieved by either reducing foam porosity or foam pore density. During the melting process, temperature increased more linearly for the foam–PCM composite than for the case of pure paraffin since the enhancement in thermal conduction caused by the metal foam exceeded the level of its suppression to natural convection of melted paraffin. |
Author | Tao, W.Q. Qu, Z.G. Wang, J.L. Li, W.Q. |
Author_xml | – sequence: 1 givenname: Z.G. surname: Qu fullname: Qu, Z.G. email: zgqu@mail.xjtu.edu.cn – sequence: 2 givenname: W.Q. surname: Li fullname: Li, W.Q. – sequence: 3 givenname: J.L. surname: Wang fullname: Wang, J.L. – sequence: 4 givenname: W.Q. surname: Tao fullname: Tao, W.Q. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26731869$$DView record in Pascal Francis |
BookMark | eNqNkUuP1DAQhC20SMwu_AdfkPaS0HYejm-gFU-tBAc4Wz12Z-IhcQbbs4h_j6NZceEAp5ZaX1W1uq7ZVVgDMXYroBYg-lfH2tuJMC-YUo4Y0kixliBkDboGEE_YTgxKVyDUcMV2oJquErppnrHrlI5QiEEMO2a-FL1_IJ4nigvOfMGAB1ooZH5OPhz4QrmsxxUXnjCfI2Zy_KfPEz9NmIjbCcOBii5T9IX0gSPfLuNF_v05ezrinOjF47xh3969_Xr3obr__P7j3Zv7yrZK5IpQatUBEjk1ImCD-56cQ6cGCxL3zV53fScdjK0atYa-7wgsWakcNG7UzQ27vfie4vrjTCmbxSdL84yB1nMyQrWtktDK_t-oHJq-UyA219cX1MY1pUijOUW_YPxlBJitBnM0f9dgthoMaFOeXCxePqZhsjiPhbE-_fGRvWrE0G9Rny4clS89-OKSrKdgyflINhu3-v8P_Q0Kea2p |
CODEN | IHMTDL |
CitedBy_id | crossref_primary_10_1016_j_energy_2018_09_147 crossref_primary_10_1016_j_est_2022_104650 crossref_primary_10_1016_j_icheatmasstransfer_2021_105127 crossref_primary_10_1016_j_rser_2023_113196 crossref_primary_10_1016_j_est_2022_105185 crossref_primary_10_1016_j_est_2024_110813 crossref_primary_10_1016_j_icheatmasstransfer_2021_105407 crossref_primary_10_1016_j_rser_2022_112783 crossref_primary_10_1115_1_4048861 crossref_primary_10_1016_j_carbon_2016_01_063 crossref_primary_10_1016_j_ijheatmasstransfer_2014_09_071 crossref_primary_10_1016_j_enconman_2017_12_002 crossref_primary_10_1016_j_ijheatmasstransfer_2017_10_008 crossref_primary_10_1016_j_ijheatmasstransfer_2019_02_001 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120454 crossref_primary_10_1016_j_applthermaleng_2017_09_047 crossref_primary_10_1016_j_est_2016_12_002 crossref_primary_10_1016_j_apenergy_2016_07_094 crossref_primary_10_1016_j_ijthermalsci_2020_106525 crossref_primary_10_1016_j_applthermaleng_2021_117436 crossref_primary_10_1016_j_ijft_2023_100374 crossref_primary_10_1016_j_est_2023_109380 crossref_primary_10_1002_er_8037 crossref_primary_10_1016_j_icheatmasstransfer_2017_07_001 crossref_primary_10_1016_j_tsep_2022_101542 crossref_primary_10_1016_j_ijft_2023_100419 crossref_primary_10_1016_j_est_2023_108320 crossref_primary_10_1016_j_icheatmasstransfer_2023_106690 crossref_primary_10_1016_j_rser_2015_12_238 crossref_primary_10_1016_j_csite_2020_100742 crossref_primary_10_1016_j_ijheatmasstransfer_2019_118852 crossref_primary_10_1016_j_ijheatmasstransfer_2016_03_068 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122257 crossref_primary_10_1016_j_egypro_2017_09_502 crossref_primary_10_1016_j_est_2022_106496 crossref_primary_10_1016_j_applthermaleng_2022_118695 crossref_primary_10_1002_adem_201700766 crossref_primary_10_1016_j_buildenv_2017_10_035 crossref_primary_10_1016_j_applthermaleng_2015_12_056 crossref_primary_10_1016_j_applthermaleng_2016_02_116 crossref_primary_10_1016_j_applthermaleng_2020_115303 crossref_primary_10_1002_er_6404 crossref_primary_10_1016_j_enconman_2018_01_056 crossref_primary_10_1016_j_tsep_2022_101536 crossref_primary_10_1016_j_rser_2021_111919 crossref_primary_10_1016_j_ijthermalsci_2021_107176 crossref_primary_10_1088_1742_6596_2116_1_012077 crossref_primary_10_1016_j_energy_2014_04_071 crossref_primary_10_1088_2515_7655_ab2f1e crossref_primary_10_1016_j_enbuild_2020_110237 crossref_primary_10_1007_s11630_024_1925_0 crossref_primary_10_1016_j_renene_2019_07_115 crossref_primary_10_1016_j_ijheatmasstransfer_2017_07_056 crossref_primary_10_1016_j_renene_2023_05_021 crossref_primary_10_1016_j_ijft_2022_100216 crossref_primary_10_1016_j_ijheatmasstransfer_2017_10_099 crossref_primary_10_1016_j_jmrt_2024_01_193 crossref_primary_10_1016_j_est_2024_111376 crossref_primary_10_1016_j_applthermaleng_2018_12_024 crossref_primary_10_1016_j_icheatmasstransfer_2022_106052 crossref_primary_10_1016_j_csite_2021_100944 crossref_primary_10_1016_j_icheatmasstransfer_2023_107169 crossref_primary_10_1016_j_ijrefrig_2019_06_018 crossref_primary_10_1016_j_rser_2013_12_017 crossref_primary_10_3390_en10070902 crossref_primary_10_1016_j_jcis_2022_09_032 crossref_primary_10_1016_j_icheatmasstransfer_2023_107225 crossref_primary_10_1051_matecconf_20141803009 crossref_primary_10_1038_s41598_021_97165_y crossref_primary_10_1016_j_colsurfa_2022_129516 crossref_primary_10_1016_j_est_2022_106074 crossref_primary_10_1016_j_est_2022_106591 crossref_primary_10_3390_mi12030265 crossref_primary_10_1016_j_applthermaleng_2013_04_022 crossref_primary_10_1016_j_applthermaleng_2022_118153 crossref_primary_10_1021_acsomega_2c00623 crossref_primary_10_1016_j_est_2020_101867 crossref_primary_10_1016_j_solener_2017_07_010 crossref_primary_10_3390_en14051389 crossref_primary_10_1016_j_applthermaleng_2022_118839 crossref_primary_10_1016_j_enconman_2018_10_037 crossref_primary_10_1016_j_ijheatmasstransfer_2016_06_066 crossref_primary_10_1016_j_enconman_2019_112287 crossref_primary_10_1016_j_applthermaleng_2017_10_030 crossref_primary_10_1016_j_est_2020_102166 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123651 crossref_primary_10_1016_j_seta_2022_102234 crossref_primary_10_1016_j_renene_2023_119719 crossref_primary_10_1007_s10973_020_09508_y crossref_primary_10_1016_j_apenergy_2013_04_059 crossref_primary_10_1016_j_solener_2021_09_055 crossref_primary_10_1080_01457632_2019_1685241 crossref_primary_10_1016_j_ast_2013_08_013 crossref_primary_10_1016_j_solmat_2015_12_041 crossref_primary_10_1115_1_4029970 crossref_primary_10_1007_s12209_020_00270_8 crossref_primary_10_1016_j_applthermaleng_2020_115504 crossref_primary_10_1080_10407782_2023_2279290 crossref_primary_10_1016_j_est_2021_103224 crossref_primary_10_1016_j_icheatmasstransfer_2022_106365 crossref_primary_10_1115_1_4056543 crossref_primary_10_1016_j_apenergy_2020_115353 crossref_primary_10_1016_j_renene_2022_04_084 crossref_primary_10_1016_j_applthermaleng_2016_11_111 crossref_primary_10_1088_1742_6596_2766_1_012229 crossref_primary_10_1016_j_icheatmasstransfer_2022_106407 crossref_primary_10_1016_j_ijheatmasstransfer_2015_09_033 crossref_primary_10_1002_adem_202301704 crossref_primary_10_1016_j_tsep_2023_102311 crossref_primary_10_1016_j_ijhydene_2017_12_047 crossref_primary_10_1016_j_est_2019_101179 crossref_primary_10_1039_D0TA04626D crossref_primary_10_1016_j_applthermaleng_2023_120584 crossref_primary_10_1016_j_ijheatmasstransfer_2016_04_047 crossref_primary_10_1016_j_tca_2019_02_013 |
Cites_doi | 10.1115/1.2818764 10.1115/1.1287793 10.1016/S0009-2509(02)00166-5 10.1016/j.rser.2009.06.024 10.1063/1.2802183 10.1016/j.applthermaleng.2011.11.001 10.1016/j.rser.2010.08.007 10.1016/j.renene.2011.04.002 10.1016/j.solmat.2008.09.010 10.1016/j.scriptamat.2006.07.050 10.1016/j.rser.2009.10.015 10.1115/1.2912185 10.1016/j.ijthermalsci.2007.07.016 10.1016/S0017-9310(00)00123-X 10.1016/j.ijheatmasstransfer.2005.01.032 |
ContentType | Journal Article |
Copyright | 2012 Elsevier Ltd 2014 INIST-CNRS |
Copyright_xml | – notice: 2012 Elsevier Ltd – notice: 2014 INIST-CNRS |
DBID | IQODW AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M |
DOI | 10.1016/j.icheatmasstransfer.2012.09.001 |
DatabaseName | Pascal-Francis CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics Applied Sciences |
EISSN | 1879-0178 |
EndPage | 1549 |
ExternalDocumentID | 10_1016_j_icheatmasstransfer_2012_09_001 26731869 S0735193312002138 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSG SST SSZ T5K WUQ XPP ~G- 08R AALMO ABFLS ABPIF ADALY IPNFZ IQODW AAXKI AAYXX AFJKZ AKRWK CITATION 7TB 8FD FR3 H8D KR7 L7M |
ID | FETCH-LOGICAL-c471t-ea29750aeed7fa0a3ab6eddad78c02ab3b95652d0f47f990665e0cec27d03df93 |
IEDL.DBID | AIKHN |
ISSN | 0735-1933 |
IngestDate | Fri Oct 25 02:55:54 EDT 2024 Fri Oct 25 22:13:00 EDT 2024 Thu Sep 26 19:41:03 EDT 2024 Thu Nov 24 18:30:00 EST 2022 Fri Feb 23 02:27:13 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Metal foams Thermal management Phase change material Heat sink Electronic component Metal foam Cooling system Temperature control PCM material Passive system Copper Experimental study Heat transfer |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c471t-ea29750aeed7fa0a3ab6eddad78c02ab3b95652d0f47f990665e0cec27d03df93 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PQID | 1283657019 |
PQPubID | 23500 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_1744720426 proquest_miscellaneous_1283657019 crossref_primary_10_1016_j_icheatmasstransfer_2012_09_001 pascalfrancis_primary_26731869 elsevier_sciencedirect_doi_10_1016_j_icheatmasstransfer_2012_09_001 |
PublicationCentury | 2000 |
PublicationDate | 2012-12-01 |
PublicationDateYYYYMMDD | 2012-12-01 |
PublicationDate_xml | – month: 12 year: 2012 text: 2012-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | International communications in heat and mass transfer |
PublicationYear | 2012 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Hong, Herling (bb0060) 2006; 55 Calmidi, Mahajan (bb0075) 2000; 122 Agyenim, Hewitt, Eames, Smyth (bb0005) 2010; 14 Jegadheeswaran, Pohekar (bb0020) 2009; 13 Boomsma, Poulikakos (bb0065) 2001; 44 Fourie, Du Plessis (bb0070) 2002; 57 Li, Qu, He, Tao (bb0010) 2012; 37 Fan, Khodadadi (bb0015) 2011; 15 Wang, Yap, Mujumdar (bb0030) 2008; 47 Lafdi, Mesalhy, Elgafy (bb0055) 2008; 130 Akhilesh, Narasimhan, Balaji (bb0025) 2005; 48 Weinstein, Kopec, Fleischer, D'Addio, Bessel (bb0045) 2008; 130 Kim, Drzal (bb0040) 2009; 93 Zhang, Zhao (bb0035) 2011; 36 Lafdi, Mesalhy, Shaikh (bb0050) 2007; 102 Hong (10.1016/j.icheatmasstransfer.2012.09.001_bb0060) 2006; 55 Agyenim (10.1016/j.icheatmasstransfer.2012.09.001_bb0005) 2010; 14 Fourie (10.1016/j.icheatmasstransfer.2012.09.001_bb0070) 2002; 57 Calmidi (10.1016/j.icheatmasstransfer.2012.09.001_bb0075) 2000; 122 Kim (10.1016/j.icheatmasstransfer.2012.09.001_bb0040) 2009; 93 Boomsma (10.1016/j.icheatmasstransfer.2012.09.001_bb0065) 2001; 44 Jegadheeswaran (10.1016/j.icheatmasstransfer.2012.09.001_bb0020) 2009; 13 Weinstein (10.1016/j.icheatmasstransfer.2012.09.001_bb0045) 2008; 130 Akhilesh (10.1016/j.icheatmasstransfer.2012.09.001_bb0025) 2005; 48 Li (10.1016/j.icheatmasstransfer.2012.09.001_bb0010) 2012; 37 Fan (10.1016/j.icheatmasstransfer.2012.09.001_bb0015) 2011; 15 Wang (10.1016/j.icheatmasstransfer.2012.09.001_bb0030) 2008; 47 Lafdi (10.1016/j.icheatmasstransfer.2012.09.001_bb0050) 2007; 102 Lafdi (10.1016/j.icheatmasstransfer.2012.09.001_bb0055) 2008; 130 Zhang (10.1016/j.icheatmasstransfer.2012.09.001_bb0035) 2011; 36 |
References_xml | – volume: 14 start-page: 615 year: 2010 end-page: 628 ident: bb0005 article-title: A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS) publication-title: Renewable and Sustainable Energy Reviews contributor: fullname: Smyth – volume: 122 start-page: 557 year: 2000 end-page: 565 ident: bb0075 article-title: Forced convection in high porosity metal foams publication-title: Journal of Heat Transfer contributor: fullname: Mahajan – volume: 15 start-page: 24 year: 2011 end-page: 46 ident: bb0015 article-title: Thermal conductivity enhancement of phase change materials for thermal energy storage: a review publication-title: Renewable and Sustainable Energy Reviews contributor: fullname: Khodadadi – volume: 55 start-page: 887 year: 2006 end-page: 890 ident: bb0060 article-title: Open-cell aluminum foams filled with phase change materials as compact heat sinks publication-title: Scripta Materialia contributor: fullname: Herling – volume: 13 start-page: 2225 year: 2009 end-page: 2244 ident: bb0020 article-title: Performance enhancement in latent heat thermal storage system: a review publication-title: Renewable and Sustainable Energy Reviews contributor: fullname: Pohekar – volume: 130 start-page: 0210041.1 year: 2008 end-page: 0210041.8 ident: bb0055 article-title: Merits of employing foam encapsulated phase change materials for pulsed power electronics cooling applications publication-title: Journal of Electronic Packaging contributor: fullname: Elgafy – volume: 44 start-page: 827 year: 2001 end-page: 836 ident: bb0065 article-title: On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam publication-title: International Journal of Heat and Mass Transfer contributor: fullname: Poulikakos – volume: 130 start-page: 0424051.1 year: 2008 end-page: 0424051.8 ident: bb0045 article-title: The experimental exploration of embedding phase change materials with graphite nanofibers for the thermal management of electronics publication-title: Journal of Heat Transfer contributor: fullname: Bessel – volume: 102 start-page: 083549.1 year: 2007 end-page: 083549.6 ident: bb0050 article-title: Experimental study on the influence of foam porosity and pore size on the melting of phase change materials publication-title: Journal of Applied Physics contributor: fullname: Shaikh – volume: 93 start-page: 136 year: 2009 end-page: 142 ident: bb0040 article-title: High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets publication-title: Solar Energy Materials and Solar Cells contributor: fullname: Drzal – volume: 48 start-page: 2759 year: 2005 end-page: 2770 ident: bb0025 article-title: Method to improve geometry for heat transfer enhancement in PCM composite heat sinks publication-title: International Journal of Heat and Mass Transfer contributor: fullname: Balaji – volume: 36 start-page: 2959 year: 2011 end-page: 2966 ident: bb0035 article-title: Thermal and rheological properties of microencapsulated phase change materials publication-title: Renewable Energy contributor: fullname: Zhao – volume: 37 start-page: 1 year: 2012 end-page: 9 ident: bb0010 article-title: Experimental and numerical studies on melting phase change heat transfer in open-cell metallic foams filled with paraffin publication-title: Applied Thermal Engineering contributor: fullname: Tao – volume: 57 start-page: 2781 year: 2002 end-page: 2789 ident: bb0070 article-title: Pressure drop modeling in cellular metallic foams publication-title: Chemical Engineering Science contributor: fullname: Du Plessis – volume: 47 start-page: 1055 year: 2008 end-page: 1068 ident: bb0030 article-title: A parametric study of phase change material (PCM)-based heat sinks publication-title: International Journal of Thermal Sciences contributor: fullname: Mujumdar – volume: 130 start-page: 0424051.1 issue: 4 year: 2008 ident: 10.1016/j.icheatmasstransfer.2012.09.001_bb0045 article-title: The experimental exploration of embedding phase change materials with graphite nanofibers for the thermal management of electronics publication-title: Journal of Heat Transfer doi: 10.1115/1.2818764 contributor: fullname: Weinstein – volume: 122 start-page: 557 issue: 3 year: 2000 ident: 10.1016/j.icheatmasstransfer.2012.09.001_bb0075 article-title: Forced convection in high porosity metal foams publication-title: Journal of Heat Transfer doi: 10.1115/1.1287793 contributor: fullname: Calmidi – volume: 57 start-page: 2781 issue: 14 year: 2002 ident: 10.1016/j.icheatmasstransfer.2012.09.001_bb0070 article-title: Pressure drop modeling in cellular metallic foams publication-title: Chemical Engineering Science doi: 10.1016/S0009-2509(02)00166-5 contributor: fullname: Fourie – volume: 13 start-page: 2225 issue: 9 year: 2009 ident: 10.1016/j.icheatmasstransfer.2012.09.001_bb0020 article-title: Performance enhancement in latent heat thermal storage system: a review publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2009.06.024 contributor: fullname: Jegadheeswaran – volume: 102 start-page: 083549.1 issue: 8 year: 2007 ident: 10.1016/j.icheatmasstransfer.2012.09.001_bb0050 article-title: Experimental study on the influence of foam porosity and pore size on the melting of phase change materials publication-title: Journal of Applied Physics doi: 10.1063/1.2802183 contributor: fullname: Lafdi – volume: 37 start-page: 1 year: 2012 ident: 10.1016/j.icheatmasstransfer.2012.09.001_bb0010 article-title: Experimental and numerical studies on melting phase change heat transfer in open-cell metallic foams filled with paraffin publication-title: Applied Thermal Engineering doi: 10.1016/j.applthermaleng.2011.11.001 contributor: fullname: Li – volume: 15 start-page: 24 issue: 1 year: 2011 ident: 10.1016/j.icheatmasstransfer.2012.09.001_bb0015 article-title: Thermal conductivity enhancement of phase change materials for thermal energy storage: a review publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2010.08.007 contributor: fullname: Fan – volume: 36 start-page: 2959 issue: 11 year: 2011 ident: 10.1016/j.icheatmasstransfer.2012.09.001_bb0035 article-title: Thermal and rheological properties of microencapsulated phase change materials publication-title: Renewable Energy doi: 10.1016/j.renene.2011.04.002 contributor: fullname: Zhang – volume: 93 start-page: 136 issue: 1 year: 2009 ident: 10.1016/j.icheatmasstransfer.2012.09.001_bb0040 article-title: High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets publication-title: Solar Energy Materials and Solar Cells doi: 10.1016/j.solmat.2008.09.010 contributor: fullname: Kim – volume: 55 start-page: 887 issue: 10 year: 2006 ident: 10.1016/j.icheatmasstransfer.2012.09.001_bb0060 article-title: Open-cell aluminum foams filled with phase change materials as compact heat sinks publication-title: Scripta Materialia doi: 10.1016/j.scriptamat.2006.07.050 contributor: fullname: Hong – volume: 14 start-page: 615 issue: 2 year: 2010 ident: 10.1016/j.icheatmasstransfer.2012.09.001_bb0005 article-title: A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS) publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2009.10.015 contributor: fullname: Agyenim – volume: 130 start-page: 0210041.1 issue: 2 year: 2008 ident: 10.1016/j.icheatmasstransfer.2012.09.001_bb0055 article-title: Merits of employing foam encapsulated phase change materials for pulsed power electronics cooling applications publication-title: Journal of Electronic Packaging doi: 10.1115/1.2912185 contributor: fullname: Lafdi – volume: 47 start-page: 1055 issue: 8 year: 2008 ident: 10.1016/j.icheatmasstransfer.2012.09.001_bb0030 article-title: A parametric study of phase change material (PCM)-based heat sinks publication-title: International Journal of Thermal Sciences doi: 10.1016/j.ijthermalsci.2007.07.016 contributor: fullname: Wang – volume: 44 start-page: 827 issue: 4 year: 2001 ident: 10.1016/j.icheatmasstransfer.2012.09.001_bb0065 article-title: On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam publication-title: International Journal of Heat and Mass Transfer doi: 10.1016/S0017-9310(00)00123-X contributor: fullname: Boomsma – volume: 48 start-page: 2759 issue: 13 year: 2005 ident: 10.1016/j.icheatmasstransfer.2012.09.001_bb0025 article-title: Method to improve geometry for heat transfer enhancement in PCM composite heat sinks publication-title: International Journal of Heat and Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2005.01.032 contributor: fullname: Akhilesh |
SSID | ssj0001818 |
Score | 2.4234912 |
Snippet | An electronic passive thermal management system was designed. The system featured a hybrid heat sink with parallel fins sintered onto its top and copper metal... |
SourceID | proquest crossref pascalfrancis elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1546 |
SubjectTerms | Applied sciences Basements Copper Design. Technologies. Operation analysis. Testing Electronics Energy Energy. Thermal use of fuels Exact sciences and technology Foams Heat sink Integrated circuits Metal foams Paraffins Phase change material Porosity Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Surface temperature Thermal management Transport and storage of energy |
Title | Passive thermal management using metal foam saturated with phase change material in a heat sink |
URI | https://dx.doi.org/10.1016/j.icheatmasstransfer.2012.09.001 https://search.proquest.com/docview/1283657019 https://search.proquest.com/docview/1744720426 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ra9RAEB7aK0pFRKvFs_VYwQdf4u1lN7vJYzksp2IRtNC3ZbPZrackd3jpq7_dmU1ythQLgo8JO2GyMzvzZfPtDMBrK5wTKuhEqZwnMtMuKRHEJSHNLRel5yHW7vx0phbn8sNFdrED8-EsDNEq-9jfxfQYrfs70342p-vlcvoFnZPgh5hFnoHId2EP01Gaj2Dv5P3Hxdk2IGMSiwEZxyckcB_e_KF5EeHStjUi1TYiRU9FQmmDMNax_Fu2eri2G5zD0DW_uBXHY3I6fQyPelTJTjrFn8CObw7gwbVagwdwL3I93eYpmM-oBgY5RtivRrF6S4FhRIO_ZLVHSM7CytZsQ4U_EY9WjHZs2fobZj3WnRZGuTb6L1s2zDJ6QYbiP57B-em7r_NF0vdZSBympjbxlo7XcovpUgfLrbCl8lVlK507ntpSlPgRlaUVD1IHzF5KZZ4771JdcVGFQhzCqFk1_jmwUhZOi1LazGVSZ9LOZIrLvpLeBhFEMYZimE-z7sppmIFn9t3ctoUhWxheEPVuDPPBAOaGixiM_v_wlMkN223VSJUW1J9rDK8GYxpcavT_xDZ-dbUx6FuCmEKzu8ZoKanvT6pe_Bd1j2CfrjoCzTGM2p9X_iXCoLacwO7bX7NJ7-y_AeIhDIs |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swED66lv0oY3TdytJtnQZ72IuJYslS_FjCSrq2YdAW-iZkWdqyYScs7v_fO9lOW8oGg73aOnPWne4-y5_uAD5Z4ZxQQSdKjXkiM-2SAkFcEtKx5aLwPMTanWczNb2UX6-yqw2Y9GdhiFbZxf42psdo3V0ZdrM5XM7nw3N0ToIfYhR5BmL8CLYQDeS4OrcOj0-ms3VAxiQWAzKOT0jgCXy-pXkR4dI2FSLVJiJFT0VCaYMw1rH8U7Z6vrQrnMPQNr94EMdjcjragRcdqmSHreIvYcPXu7B9p9bgLjyOXE-3egXmG6qBQY4R9qtQrFpTYBjR4L-zyiMkZ2FhK7aiwp-IR0tGO7Zs-QOzHmtPC6NcE_2XzWtmGb0gQ_Ffr-Hy6MvFZJp0fRYSh6mpSbyl47XcYrrUwXIrbKF8WdpSjx1PbSEK_IjK0pIHqQNmL6Uyz513qS65KEMu9mCzXtT-DbBC5k6LQtrMZVJn0o5kisu-lN4GEUQ-gLyfT7Nsy2mYnmf20zy0hSFbGJ4T9W4Ak94A5p6LGIz-__CUg3u2W6uRKi2oP9cAPvbGNLjU6P-Jrf3iemUwlQtiCo3-NkZLSX1_UrX_X9T9AE-nF2en5vR4dvIWntGdlkzzDjab39f-PUKipjjoXP4GXpUOfw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Passive+thermal+management+using+metal+foam+saturated+with+phase+change+material+in+a+heat+sink&rft.jtitle=International+communications+in+heat+and+mass+transfer&rft.au=Qu%2C+Z.G.&rft.au=Li%2C+W.Q.&rft.au=Wang%2C+J.L.&rft.au=Tao%2C+W.Q.&rft.date=2012-12-01&rft.pub=Elsevier+Ltd&rft.issn=0735-1933&rft.eissn=1879-0178&rft.volume=39&rft.issue=10&rft.spage=1546&rft.epage=1549&rft_id=info:doi/10.1016%2Fj.icheatmasstransfer.2012.09.001&rft.externalDocID=S0735193312002138 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0735-1933&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0735-1933&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0735-1933&client=summon |