Passive thermal management using metal foam saturated with phase change material in a heat sink

An electronic passive thermal management system was designed. The system featured a hybrid heat sink with parallel fins sintered onto its top and copper metal foam–paraffin composite saturated in its hollow basement. The other two types of basement patterns for thermal dissipation were also employed...

Full description

Saved in:
Bibliographic Details
Published inInternational communications in heat and mass transfer Vol. 39; no. 10; pp. 1546 - 1549
Main Authors Qu, Z.G., Li, W.Q., Wang, J.L., Tao, W.Q.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.12.2012
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An electronic passive thermal management system was designed. The system featured a hybrid heat sink with parallel fins sintered onto its top and copper metal foam–paraffin composite saturated in its hollow basement. The other two types of basement patterns for thermal dissipation were also employed: (1) a hollow basement saturated with pure paraffin; (2) a solid copper basement. The experimental results showed that the use of the copper metal foam reduced the surface temperature and the time required to reach the melting point of the paraffin. Lower surface temperature can be achieved by either reducing foam porosity or foam pore density. During the melting process, temperature increased more linearly for the foam–PCM composite than for the case of pure paraffin since the enhancement in thermal conduction caused by the metal foam exceeded the level of its suppression to natural convection of melted paraffin.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0735-1933
1879-0178
DOI:10.1016/j.icheatmasstransfer.2012.09.001