Demographic and disease-related factors impact bone turnover and vitamin D in children with hemato-oncological diseases

Children with hemato-oncological diseases may have significant skeletal morbidity, not only during and after treatment but also at the time of diagnosis before cancer treatment. This study was designed to evaluate the vitamin D status and circulating bone metabolic markers and their determinants in...

Full description

Saved in:
Bibliographic Details
Published inJBMR plus Vol. 8; no. 4; p. ziae017
Main Authors Jackmann, Natalja, Gustafsson, Jan, Utriainen, Pauliina, Magnusson, Per, Harila, Arja, Atanasova, Diana, Rinaldo, Carina, Frisk, Per, Mäkitie, Outi
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Children with hemato-oncological diseases may have significant skeletal morbidity, not only during and after treatment but also at the time of diagnosis before cancer treatment. This study was designed to evaluate the vitamin D status and circulating bone metabolic markers and their determinants in children at the time of diagnostic evaluation for hemato-oncological disease. This cross-sectional study included 165 children (91 males, median age 6.9 yr range 0.2-17.7 yr). Of them, 76 patients were diagnosed with extracranial or intracranial solid tumors, 83 with leukemia, and 6 with bone marrow failure. Bone metabolism was assessed by measuring serum 25OHD, PTH, bone alkaline phosphatase, intact N-terminal propeptide of type I procollagen, and C-terminal cross-linked telopeptide of type I collagen. Vitamin D deficiency was found in 30.9% of children. Lower 25OHD levels were associated with older age, lack of vitamin D supplementation, season outside summer, and a country of parental origin located between latitudes -45° and 45°. Children diagnosed with leukemia had lower levels of markers of bone formation and bone resorption than those who had solid tumors or bone marrow failure. In conclusion, vitamin D deficiency was observed in one-third of children with newly diagnosed cancer. Bone turnover markers were decreased in children with leukemia, possibly because of the suppression of osteoblasts and osteoclasts by leukemic cells. The identification of patients with suboptimal vitamin D status and compromised bone remodeling at cancer diagnosis may aid in the development of supportive treatment to reduce the adverse effects of cancer and its treatment.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2473-4039
2473-4039
DOI:10.1093/jbmrpl/ziae017