Sodium Butyrate Inhibits Neovascularization Partially via TNXIP/VEGFR2 Pathway

Control of neovascularization with small molecules is a promising tactics. Here, we tested the roles of sodium butyrate (NaBu) on the neovascularization and primary explained its underlining molecular links. We used models including cell and ex vivo culture of choroid and mouse, as well as the bioch...

Full description

Saved in:
Bibliographic Details
Published inOxidative medicine and cellular longevity Vol. 2020; no. 2020; pp. 1 - 13
Main Authors Chen, Haoyu, Liang, Jiajian, Huang, Shaofen, Xu, Yanxuan, Chen, Min, Xiao, Xiaoqiang, Cao, Yingjie
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 2020
Hindawi
Hindawi Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Control of neovascularization with small molecules is a promising tactics. Here, we tested the roles of sodium butyrate (NaBu) on the neovascularization and primary explained its underlining molecular links. We used models including cell and ex vivo culture of choroid and mouse, as well as the biochemical and cellular techniques, to confirm our hypothesis. We found that treating HUVEC cells with NaBu (both 2.5 mM and 5 mM) significantly inhibited its ability in tube formation and proliferation. This inhibitory effect was also observed in choroid sprouting experiments, compared to the control. Interestingly, the choroid sprouting suppressed by NaBu can proliferate again after removing it, indicating that the cell cycle progression might be arrested. The laser-induced choroid neovascularization (CNV) was significantly alleviated by assessing the CNV size (decreased to 0.73 fold) in contrast with the vehicle control group after 2.5 mM NaBu injection for 7 days. Mechanistically, we found an enhanced TXNIP expression in response to NaBu treatment in all the three models. Overexpressing TXNIP in HUVEC cells blocked its tube formation and inhibited its proliferation; on the other hand, knocking down its expression with shRNA reversed those phenotypes in context of NaBu treatment. Further investigation showed the expression of VEGF receptor 2 (VEGFR2) in HUVEC cells was regulated by TXNIP undergoing NaBu treatment. We therefore argued that NaBu inhibited neovascularization partially through TXNIP-regulated VEGFR2 signal pathway.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Academic Editor: José P. Andrade
ISSN:1942-0900
1942-0994
DOI:10.1155/2020/6415671