Numerical Modelling of the Heat Source and the Thermal Response of an Additively Manufactured Composite during an Active Thermographic Inspection

This paper deals with the numerical modelling of non-destructive testing of composite parts using active thermography. This method has emerged as a new approach for performing non-destructive testing (NDT) on continuous carbon fibre reinforced thermoplastic polymer (CCFRTP) components, particularly...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 17; no. 1; p. 13
Main Authors Notebaert, Arnaud, Quinten, Julien, Moonens, Marc, Olmez, Vedi, Barros, Camila, Cunha, Jr, Sebastião Simões, Demarbaix, Anthonin
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 19.12.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper deals with the numerical modelling of non-destructive testing of composite parts using active thermography. This method has emerged as a new approach for performing non-destructive testing (NDT) on continuous carbon fibre reinforced thermoplastic polymer (CCFRTP) components, particularly in view of detecting porosity or delamination. In this context, our numerical model has been developed around references containing internal defects of various shapes and sizes. The first novelty lies in the fact that the heat source used in the experimental setup is modelled exhaustively to accurately model the radiation emitted by the lamp, as well as the convection and conduction around the bulb. A second novelty concerns the modelling of the CCFRTP making up the benchmark used. Indeed, its thermal properties vary as a function of the sample temperature. Therefore, the actual thermal properties have been experimentally measured and were later used in our model. The latter then captures the material dependency on temperature. The results obtained by our model proved to be in close agreement with the experimental results on real reference points, paving the way for future use of the model to optimise experimental configurations and, in particular, the heating parameters.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1996-1944
1996-1944
DOI:10.3390/ma17010013