Ventricular excitation maps using tissue Doppler acceleration imaging: potential clinical application

OBJECTIVES The purpose of this study is to validate the use of tissue Doppler acceleration imaging (TDAI) for evaluation of the onset of ventricular contraction in humans. BACKGROUND Tissue Doppler acceleration imaging can display the distribution, direction and value of ventricular acceleration res...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American College of Cardiology Vol. 33; no. 3; pp. 782 - 787
Main Authors Yin, Li-Xue, Li, Chuen-Mei, Fu, QinGue, Lo, Yiu, Huang, QiHua, Cai, Li, Zheng, Zhu-Xui
Format Journal Article
LanguageEnglish
Published New York, NY Elsevier Inc 01.03.1999
Elsevier Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:OBJECTIVES The purpose of this study is to validate the use of tissue Doppler acceleration imaging (TDAI) for evaluation of the onset of ventricular contraction in humans. BACKGROUND Tissue Doppler acceleration imaging can display the distribution, direction and value of ventricular acceleration responses to myocardial contraction and electrical excitation. METHODS Twenty normal volunteers underwent TDAI testing to determine the normal onset of ventricular acceleration. Two patients with paroxysmal supraventricular tachycardia and 30 patients with permanent pacemakers underwent introduction of esophageal and right ventricular pacing electrodes, respectively, and were studied to visualize the onset of pacer-induced ventricular acceleration. Eight patients with dual atrioventricular (AV) node and 20 patients with Wolff–Parkinson–White (WPW) syndrome underwent TDAI testing to localize the abnormal onset of ventricular acceleration, and the results were compared with those of intracardiac electrophysiology (ICEP) tests. RESULTS The normal onset and the onset of dual AV node were localized at the upper interventricular septum (IVS) under the right coronary cusp within 15 ms before the beginning of the R wave in the electrocardiogram (ECG). In all patients in the pacing group, the location and timing of the onset conformed to the positions and timing of electrodes (100%). In patients with WPW syndrome, abnormal onset was localized to portions of the ventricular wall other than the upper IVS at the delta wave or within 15 ms after the delta wave in the ECG. The agreement was 90% (18 of 20) between the abnormal onset and the position of the accessory pathways determined by ICEP testing. CONCLUSIONS These results suggest that TDAI is a useful noninvasive method that frequently is successful in visualizing the intramural site of origin of ventricular mechanical contraction.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0735-1097
1558-3597
DOI:10.1016/S0735-1097(98)00605-6