Degradation of the COL1 Domain of Type XIV Collagen by 92-kDa Gelatinase (∗)

Type XIV collagen is a newly described member of the fibril-associated collagens with interrupted triple helices (FACITs). Expression of this collagen has been localized to various embryonic tissues, suggesting that it has a functional role in development. All FACITs thus far described (types IX, XI...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 270; no. 3; pp. 1062 - 1067
Main Authors Sires, Ulrike I., Dublet, Bernard, Aubert-Foucher, Elisabeth, van der Rest, Michel, Welgus, Howard G.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 20.01.1995
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Type XIV collagen is a newly described member of the fibril-associated collagens with interrupted triple helices (FACITs). Expression of this collagen has been localized to various embryonic tissues, suggesting that it has a functional role in development. All FACITs thus far described (types IX, XII, XIV, and XVI) contain a highly homologous carboxyl-terminal triple helical domain designated COL1. We have studied the capacity of various matrix metalloproteinases (interstitial collagenase, stromelysin, matrilysin, and 92-kDa gelatinase) to degrade the COL1 domain of collagen XIV. We found that only 92-kDa gelatinase cleaves COL1. Furthermore, digestion of whole native collagen XIV by the 92-kDa gelatinase indicates that this enzyme specifically attacks the carboxyl-terminal triple helix-containing region of the molecule. COL1 is cleaved by 92-kDa gelatinase at 30°C, a full 5-6°C below the melting temperature (Tm) of this domain; native collagen XIV is also degraded at 30°C. In comparison to interstitial collagenase degradation of its physiologic native type I collagen substrate, the 92-kDa enzyme cleaved COL1 (XIV) with comparable catalytic efficacy. Interestingly, following thermal denaturation of the COL1 fragment, its susceptibility to 92-kDa gelatinase increases, but only to a degree that leaves it several orders of magnitude less sensitive to degradation than denatured collagens I and III. These data indicate that native COL1 and collagen XIV are readily and specifically cleaved by 92-kDa gelatinase. They also suggest a role for 92-kDa gelatinase activity in the structural tissue remodeling of the developing embryo.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.270.3.1062