Sequential combining in discriminant analysis
In practice, it often happens that we have a number of base methods of classification. We are not able to clearly determine which method is optimal in the sense of the smallest error rate. Then we have a combined method that allows us to consolidate information from multiple sources in a better clas...
Saved in:
Published in | Journal of applied statistics Vol. 42; no. 2; pp. 398 - 408 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
01.02.2015
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In practice, it often happens that we have a number of base methods of classification. We are not able to clearly determine which method is optimal in the sense of the smallest error rate. Then we have a combined method that allows us to consolidate information from multiple sources in a better classifier. I propose a different approach, a sequential approach. Sequentiality is understood here in the sense of adding posterior probabilities to the original data set and so created data are used during classification process. We combine posterior probabilities obtained from base classifiers using all combining methods. Finally, we combine these probabilities using a mean combining method. To the original data set we add obtained posterior probabilities as additional features. In each step we change our additional probabilities to achieve the minimum error rate for base methods. Experimental results on different data sets demonstrate that the method is efficient and that this approach outperforms base methods providing a reduction in the mean classification error rate. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0266-4763 1360-0532 |
DOI: | 10.1080/02664763.2014.951605 |