Sequential combining in discriminant analysis

In practice, it often happens that we have a number of base methods of classification. We are not able to clearly determine which method is optimal in the sense of the smallest error rate. Then we have a combined method that allows us to consolidate information from multiple sources in a better clas...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied statistics Vol. 42; no. 2; pp. 398 - 408
Main Author Gorecki, T
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 01.02.2015
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In practice, it often happens that we have a number of base methods of classification. We are not able to clearly determine which method is optimal in the sense of the smallest error rate. Then we have a combined method that allows us to consolidate information from multiple sources in a better classifier. I propose a different approach, a sequential approach. Sequentiality is understood here in the sense of adding posterior probabilities to the original data set and so created data are used during classification process. We combine posterior probabilities obtained from base classifiers using all combining methods. Finally, we combine these probabilities using a mean combining method. To the original data set we add obtained posterior probabilities as additional features. In each step we change our additional probabilities to achieve the minimum error rate for base methods. Experimental results on different data sets demonstrate that the method is efficient and that this approach outperforms base methods providing a reduction in the mean classification error rate.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0266-4763
1360-0532
DOI:10.1080/02664763.2014.951605