Intelligent Photolithography Corrections Using Dimensionality Reductions

With the shrinking of the IC technology node, optical proximity effects (OPC) and etch proximity effects (EPC) are the two major tasks in advanced photolithography patterning. Machine learning has emerged in OPC/EPC problems because conventional optical-solver-based OPC is time-consuming, and there...

Full description

Saved in:
Bibliographic Details
Published inIEEE photonics journal Vol. 11; no. 5; pp. 1 - 15
Main Authors Parashar, Parag, Akbar, Chandni, Rawat, Tejender S., Pratik, Sparsh, Butola, Rajat, Chen, Shih H., Chang, Yung-Sung, Nuannimnoi, Sirapop, Lin, Albert S.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.10.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:With the shrinking of the IC technology node, optical proximity effects (OPC) and etch proximity effects (EPC) are the two major tasks in advanced photolithography patterning. Machine learning has emerged in OPC/EPC problems because conventional optical-solver-based OPC is time-consuming, and there is no physical model existing for EPC. In this work, we use dimensionality reduction (DR) algorithms to reduce the computation time of complex OPC/EPC problems while the prediction accuracy is maintained. Also, we implement a pure machine learning approach where the input masks are directly mapped to the output etched patterns. While one photolithographic mask can generate many experimental patterns at once, our pure ML-based approach can shorten the trial-and-error period in the photolithographic correction. Additionally, we demonstrate the automation in SEM images preprocessing using feature detection, and this facilitates intelligent manufacturing in semiconductor processing. The input vector dimensions are effectively reduced by two orders of magnitude while the observed mean squared error is not affected significantly. The computation runtime is reduced from 4804 s of the baseline calculation to 10 s-200 s The MSE values changed from the baseline 0.037 to 0.037 for singular value decomposition (SVD), to 0.039 for independent component analysis (ICA), and to 0.035 for factor analysis (FA).
ISSN:1943-0655
1943-0655
1943-0647
DOI:10.1109/JPHOT.2019.2938536