Design and Application of Uniaxially Sensitive Stress Sensor
Current stress sensors for microsystems face integration challenges and complex signal decoding. This paper proposes a real-time uniaxially sensitive stress sensor. It is obtained by simple combinations of bar resistors using their sensitivity differences in different axes. With the aid of a Wheatst...
Saved in:
Published in | Micromachines (Basel) Vol. 16; no. 1; p. 94 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.01.2025
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Current stress sensors for microsystems face integration challenges and complex signal decoding. This paper proposes a real-time uniaxially sensitive stress sensor. It is obtained by simple combinations of bar resistors using their sensitivity differences in different axes. With the aid of a Wheatstone bridge, the sensor can measure the uniaxial stress magnitude by simple calibration of the stress against the output voltage and detect the bidirectional stress magnitude and direction in a micro-zone by simple rotation. The theoretical sensitivity obtained from simulation is 0.087 mV/V·MPa when the X-bridge is stressed in the X-direction under 1 V of excitation, and the test sensitivity of the X-bridge prepared in this paper is 0.1 mV/V·MPa. The design is structurally and procedurally simple, exhibits better temperature stability, and reduces interface requirements, making it suitable for the health monitoring of multi-chip microsystem chips. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2072-666X 2072-666X |
DOI: | 10.3390/mi16010094 |