The Electromagnetic Vibration Energy Harvesters Utilize Dual-Mass Pendulums for Multidirectional Harvesting
While vibration harvesting shows promise for powering sensors, effectively harvesting low-frequency, multidirectional ambient vibrations remains challenging. This article presents a novel electromagnetic vibration energy harvesting device (EVEHD) with three key innovations: a dual-mode mass-pendulum...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 25; no. 7; p. 2017 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
23.03.2025
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | While vibration harvesting shows promise for powering sensors, effectively harvesting low-frequency, multidirectional ambient vibrations remains challenging. This article presents a novel electromagnetic vibration energy harvesting device (EVEHD) with three key innovations: a dual-mode mass-pendulum configuration—dual-mass coupling (series mode) amplifies induced voltage, and dual-mass uncoupled (parallel) mode enables multifrequency harvesting—spring-position-based frequency tuning (4.5–16.7 Hz in series mode; dual-band 3.7–9.3/5–13.3 Hz in parallel mode), and an optimized energy conversion structure, boosting output by 85.2%. The findings were validated through theoretical modeling, FEM simulations, and shaker tests, the EVEHD generating a maximum voltage of 2 V and a power of 769.2 mW under a base excitation amplitude of 0.5 g at 16.7 Hz. This work reveals the potential of this multidirectional EVEHD for power generation and application in self-powered systems. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s25072017 |