Pharmacokinetic Interaction Study of Ketamine and Rhynchophylline in Rat Plasma by Ultra-Performance Liquid Chromatography Tandem Mass Spectrometry

Eighteen Sprague-Dawley rats were randomly divided into three groups: ketamine group, rhynchophylline group, and ketamine combined with rhynchophylline group (n = 6). The rats of two groups received a single intraperitoneal administration of 30 mg/kg ketamine and 30 mg/kg rhynchophylline, respective...

Full description

Saved in:
Bibliographic Details
Published inBioMed research international Vol. 2018; no. 2018; pp. 1 - 8
Main Authors Wu, Bo, Wang, Xianqin, Cai, Yuan, Chen, Dingwen, You, Weiwei, Chen, Lian-Guo, Wen, Congcong
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 01.01.2018
Hindawi
Hindawi Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Eighteen Sprague-Dawley rats were randomly divided into three groups: ketamine group, rhynchophylline group, and ketamine combined with rhynchophylline group (n = 6). The rats of two groups received a single intraperitoneal administration of 30 mg/kg ketamine and 30 mg/kg rhynchophylline, respectively, and the third group received combined intraperitoneal administration of 30 mg/kg ketamine and 30 mg/kg rhynchophylline together. After blood sampling at different time points and processing, the concentrations of ketamine and rhynchophylline in rat plasma were determined by the established ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method. Chromatographic separation was achieved using a UPLC BEH C18 column (2.1 mm × 50 mm, 1.7 μm) with carbamazepine as an internal standard (IS). The initial mobile phase consisted of acetonitrile and water (containing 0.1% formic acid) with gradient elution. Multiple reaction monitoring (MRM) modes of m/z 238.1 → 179.1 for ketamine, m/z 385.3 → 159.8 for rhynchophylline, and m/z 237.3 → 194.3 for carbamazepine (IS) were utilized to conduct quantitative analysis. Calibration curve of ketamine and rhynchophylline in rat plasma demonstrated good linearity in the range of 1-1000 ng/mL (r > 0.995), and the lower limit of quantification (LLOQ) was 1 ng/mL. Moreover, the intra- and interday precision relative standard deviation (RSD) of ketamine and rhynchophylline were less than 11% and 14%, respectively. This sensitive, rapid, and selective UPLC-MS/MS method was successfully applied to pharmacokinetic interaction study of ketamine and rhynchophylline after intraperitoneal administration. The results showed that there may be a reciprocal inhibition between ketamine and rhynchophylline.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Academic Editor: Gail B. Mahady
ISSN:2314-6133
2314-6141
DOI:10.1155/2018/6562309