Task Similarity-Aware Cooperative Computation Offloading and Resource Allocation for Reusable Tasks in Dense MEC Systems

As an emerging paradigm for supporting computation-intensive and latency-sensitive services, mobile edge computing (MEC) faces significant challenges in terms of efficient resource utilization and intelligent task coordination among heterogeneous user equipment (UE), especially in dense MEC scenario...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 10; p. 3172
Main Authors Mu, Hanchao, Wu, Shie, He, Pengfei, Chen, Jiahui, Wu, Wenqing
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 17.05.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:As an emerging paradigm for supporting computation-intensive and latency-sensitive services, mobile edge computing (MEC) faces significant challenges in terms of efficient resource utilization and intelligent task coordination among heterogeneous user equipment (UE), especially in dense MEC scenarios with severe interference. Generally, task similarity and cooperation opportunities among UE are usually ignored in existing studies when dealing with reusable tasks. In this paper, we investigate the problem of cooperative computation offloading and resource allocation for reusable tasks, with a focus on minimizing the energy consumption of UE while ensuring delay limits. The problem is formulated as an intractable mixed-integer nonlinear programming (MINLP) problem, and we design a similarity-based cooperative offloading and resource allocation (SCORA) algorithm to obtain a solution. Specifically, the proposed SCORA algorithm decomposes the original problem into three subproblems, i.e., task offloading, resource allocation, and power allocation, which are solved using a similarity-based matching offloading algorithm, a cooperative-based resources allocation algorithm, and a concave–convex procedure (CCCP)-based power allocation algorithm, respectively. Simulation results show that compared to the benchmark schemes, the SCORA scheme can reduce energy consumption by up to 51.52% while maintaining low latency. Moreover, the energy of UE with low remaining energy levels is largely saved.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s25103172