Extending the Field of View With Phased Array Techniques: Results of European SKA Research
The radio frequency window of the square kilometre array is planned to cover the wavelength regime from centimeters up to a few meters. For this range to be optimally covered, different antenna concepts are considered. At the lowest frequency range, up to a few gigahertz, it is expected that multibe...
Saved in:
Published in | Proceedings of the IEEE Vol. 97; no. 8; pp. 1531 - 1542 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2009
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The radio frequency window of the square kilometre array is planned to cover the wavelength regime from centimeters up to a few meters. For this range to be optimally covered, different antenna concepts are considered. At the lowest frequency range, up to a few gigahertz, it is expected that multibeam techniques will be used, increasing the effective field-of-view to a level that allows very efficient detailed and sensitive exploration of the complete sky. Although sparse narrow-band phased arrays are as old as radio astronomy, multioctave sparse and dense arrays now considered for the SKA require new low-noise design, signal processing, and calibration techniques. The successful implementation of these new array techniques has already been introduced for the use of phased array feeds upgrading existing telescopes: enhancing aperture efficiency as well as effective field-of-view. Especially the development of low-cost array antenna design will allow a cost-effective large-scale implementation for the SKA. This paper addresses these new capabilities, emphasizing the R&D work done in Europe and aims to provide insight into the status of enabling technologies and technical research on polarization, calibration, and side-lobe control that will unleash the potential of phased arrays for future growth of radio astronomy synthesis arrays. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0018-9219 1558-2256 |
DOI: | 10.1109/JPROC.2009.2021594 |