Glutamine Metabolism Is Required for Collagen Protein Synthesis in Lung Fibroblasts
Idiopathic pulmonary fibrosis (IPF) is characterized by the transforming growth factor (TGF)-β-dependent differentiation of lung fibroblasts into myofibroblasts, leading to excessive deposition of extracellular matrix proteins, which distort lung architecture and function. Metabolic reprogramming in...
Saved in:
Published in | American journal of respiratory cell and molecular biology Vol. 61; no. 5; pp. 597 - 606 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Thoracic Society
01.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Idiopathic pulmonary fibrosis (IPF) is characterized by the transforming growth factor (TGF)-β-dependent differentiation of lung fibroblasts into myofibroblasts, leading to excessive deposition of extracellular matrix proteins, which distort lung architecture and function. Metabolic reprogramming in myofibroblasts is emerging as an important mechanism in the pathogenesis of IPF, and recent evidence suggests that glutamine metabolism is required in myofibroblasts, although the exact role of glutamine in myofibroblasts is unclear. In the present study, we demonstrate that glutamine and its conversion to glutamate by glutaminase are required for TGF-β-induced collagen protein production in lung fibroblasts. We found that metabolism of glutamate to α-ketoglutarate by glutamate dehydrogenase or the glutamate-pyruvate or glutamate-oxaloacetate transaminases is not required for collagen protein production. Instead, we discovered that the glutamate-consuming enzymes phosphoserine aminotransferase 1 (PSAT1) and aldehyde dehydrogenase 18A1 (ALDH18A1)/Δ
-pyrroline-5-carboxylate synthetase (P5CS) are required for collagen protein production by lung fibroblasts. PSAT1 is required for
glycine production, whereas ALDH18A1/P5CS is required for
proline production. Consistent with this, we found that TGF-β treatment increased cellular concentrations of glycine and proline in lung fibroblasts. Our results suggest that glutamine metabolism is required to promote amino acid biosynthesis and not to provide intermediates such as α-ketoglutarate for oxidation in mitochondria. In support of this, we found that inhibition of glutaminolysis has no effect on cellular oxygen consumption and that knockdown of oxoglutarate dehydrogenase has no effect on the ability of fibroblasts to produce collagen protein. Our results suggest that amino acid biosynthesis pathways may represent novel therapeutic targets for treatment of fibrotic diseases, including IPF. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1044-1549 1535-4989 |
DOI: | 10.1165/rcmb.2019-0008OC |