TCN-MAML: A TCN-Based Model with Model-Agnostic Meta-Learning for Cross-Subject Human Activity Recognition

Human activity recognition (HAR) using Wi-Fi-based sensing has emerged as a powerful, non-intrusive solution for monitoring human behavior in smart environments. Unlike wearable sensor systems that require user compliance, Wi-Fi channel state information (CSI) enables device-free recognition by capt...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 25; no. 13; p. 4216
Main Authors Lin, Chih-Yang, Lin, Chia-Yu, Liu, Yu-Tso, Chen, Yi-Wei, Ng, Hui-Fuang, Shih, Timothy K.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 06.07.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Human activity recognition (HAR) using Wi-Fi-based sensing has emerged as a powerful, non-intrusive solution for monitoring human behavior in smart environments. Unlike wearable sensor systems that require user compliance, Wi-Fi channel state information (CSI) enables device-free recognition by capturing variations in signal propagation caused by human motion. This makes Wi-Fi sensing highly attractive for ambient healthcare, security, and elderly care applications. However, real-world deployment faces two major challenges: (1) significant cross-subject signal variability due to physical and behavioral differences among individuals, and (2) limited labeled data, which restricts model generalization. To address these sensor-related challenges, we propose TCN-MAML, a novel framework that integrates temporal convolutional networks (TCN) with model-agnostic meta-learning (MAML) for efficient cross-subject adaptation in data-scarce conditions. We evaluate our approach on a public Wi-Fi CSI dataset using a strict cross-subject protocol, where training and testing subjects do not overlap. The proposed TCN-MAML achieves 99.6% accuracy, demonstrating superior generalization and efficiency over baseline methods. Experimental results confirm the framework’s suitability for low-power, real-time HAR systems embedded in IoT sensor networks.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s25134216