p66ShcA promotes malignant breast cancer phenotypes by alleviating energetic and oxidative stress

Significant efforts have focused on identifying targetable genetic drivers that support the growth of solid tumors and/or increase metastatic ability. During tumor development and progression to metastatic disease, physiological and pharmacological selective pressures influence parallel adaptive str...

Full description

Saved in:
Bibliographic Details
Published inRedox biology Vol. 70; p. 103028
Main Authors Lewis, Kyle, La Selva, Rachel, Maldonado, Elias, Annis, Matthew G., Najyb, Ouafa, Cepeda Cañedo, Eduardo, Totten, Stephanie, Hébert, Steven, Sabourin, Valérie, Mirabelli, Caitlynn, Ciccolini, Emma, Lehuédé, Camille, Choinière, Luc, Russo, Mariana, Avizonis, Daina, Park, Morag, St-Pierre, Julie, Kleinman, Claudia L., Siegel, Peter M., Ursini-Siegel, Josie
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.04.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Significant efforts have focused on identifying targetable genetic drivers that support the growth of solid tumors and/or increase metastatic ability. During tumor development and progression to metastatic disease, physiological and pharmacological selective pressures influence parallel adaptive strategies within cancer cell sub-populations. Such adaptations allow cancer cells to withstand these stressful microenvironments. This Darwinian model of stress adaptation often prevents durable clinical responses and influences the emergence of aggressive cancers with increased metastatic fitness. However, the mechanisms contributing to such adaptive stress responses are poorly understood. We now demonstrate that the p66ShcA redox protein, itself a ROS inducer, is essential for survival in response to physiological stressors, including anchorage independence and nutrient deprivation, in the context of poor outcome breast cancers. Mechanistically, we show that p66ShcA promotes both glucose and glutamine metabolic reprogramming in breast cancer cells, to increase their capacity to engage catabolic metabolism and support glutathione synthesis. In doing so, chronic p66ShcA exposure contributes to adaptive stress responses, providing breast cancer cells with sufficient ATP and redox balance needed to withstand such transient stressed states. Our studies demonstrate that p66ShcA functionally contributes to the maintenance of aggressive phenotypes and the emergence of metastatic disease by forcing breast tumors to adapt to chronic and moderately elevated levels of oxidative stress.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2213-2317
2213-2317
DOI:10.1016/j.redox.2024.103028