Super-resolution localization photoacoustic microscopy using intrinsic red blood cells as contrast absorbers

Abstract Photoacoustic microscopy (PAM) has become a premier microscopy tool that can provide the anatomical, functional, and molecular information of animals and humans in vivo. However, conventional PAM systems suffer from limited temporal and/or spatial resolution. Here, we present a fast PAM sys...

Full description

Saved in:
Bibliographic Details
Published inLight, science & applications Vol. 8; no. 1; pp. 1 - 11
Main Authors Kim, Jongbeom, Kim, Jin Young, Jeon, Seungwan, BAIK, Jin Woo, Cho, Seong Hee, Kim, Chulhong
Format Journal Article
LanguageEnglish
Published London Springer Nature B.V 20.11.2019
Nature Publishing Group UK
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Photoacoustic microscopy (PAM) has become a premier microscopy tool that can provide the anatomical, functional, and molecular information of animals and humans in vivo. However, conventional PAM systems suffer from limited temporal and/or spatial resolution. Here, we present a fast PAM system and an agent-free localization method based on a stable and commercial galvanometer scanner with a custom-made scanning mirror (L-PAM-GS). This novel hardware implementation enhances the temporal resolution significantly while maintaining a high signal-to-noise ratio (SNR). These improvements allow us to photoacoustically and noninvasively observe the microvasculatures of small animals and humans in vivo. Furthermore, the functional hemodynamics, namely, the blood flow rate in the microvasculature, is successfully monitored and quantified in vivo. More importantly, thanks to the high SNR and fast B-mode rate (500 Hz), by localizing photoacoustic signals from captured red blood cells without any contrast agent, unresolved microvessels are clearly distinguished, and the spatial resolution is improved by a factor of 2.5 in vivo. L-PAM-GS has great potential in various fields, such as neurology, oncology, and pathology.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2047-7538
2095-5545
2047-7538
DOI:10.1038/s41377-019-0220-4