Distributed context-dependent choice information in mouse posterior cortex

Choice information appears in multi-area brain networks mixed with sensory, motor, and cognitive variables. In the posterior cortex—traditionally implicated in decision computations—the presence, strength, and area specificity of choice signals are highly variable, limiting a cohesive understanding...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; p. 192
Main Authors Orlandi, Javier G., Abdolrahmani, Mohammad, Aoki, Ryo, Lyamzin, Dmitry R., Benucci, Andrea
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 12.01.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Choice information appears in multi-area brain networks mixed with sensory, motor, and cognitive variables. In the posterior cortex—traditionally implicated in decision computations—the presence, strength, and area specificity of choice signals are highly variable, limiting a cohesive understanding of their computational significance. Examining the mesoscale activity in the mouse posterior cortex during a visual task, we found that choice signals defined a decision variable in a low-dimensional embedding space with a prominent contribution along the ventral visual stream. Their subspace was near-orthogonal to concurrently represented sensory and motor-related activations, with modulations by task difficulty and by the animals’ attention state. A recurrent neural network trained with animals’ choices revealed an equivalent decision variable whose context-dependent dynamics agreed with that of the neural data. Our results demonstrated an independent, multi-area decision variable in the posterior cortex, controlled by task features and cognitive demands, possibly linked to contextual inference computations in dynamic animal–environment interactions. In the posterior cortex, which is involved in decision making, the strength and area specificity of choice signals are highly variable. Here the authors show that the representation of choice in the posterior area of the mouse brain is orthogonal to that of sensory and movement-related signals, with modulations determined by task features and cognitive demands.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-35824-6