Shape and Structure Formation of Mixed Nonionic–Anionic Surfactant Micelles

Aqueous solutions of a nonionic surfactant (either Tween20 or BrijL23) and an anionic surfactant (sodium dodecyl sulfate, SDS) are investigated, using small-angle neutron scattering (SANS). SANS spectra are analysed by using a core-shell model to describe the form factor of self-assembled surfactant...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 26; no. 14; p. 4136
Main Authors Ludwig, Michael, Geisler, Ramsia, Prévost, Sylvain, von Klitzing, Regine
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 07.07.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Aqueous solutions of a nonionic surfactant (either Tween20 or BrijL23) and an anionic surfactant (sodium dodecyl sulfate, SDS) are investigated, using small-angle neutron scattering (SANS). SANS spectra are analysed by using a core-shell model to describe the form factor of self-assembled surfactant micelles; the intermicellar interactions are modelled by using a hard-sphere Percus–Yevick (HS-PY) or a rescaled mean spherical approximation (RMSA) structure factor. Choosing these specific nonionic surfactants allows for comparison of the effect of branched (Tween20) and linear (BrijL23) surfactant headgroups, both constituted of poly-ethylene oxide (PEO) groups. The nonionic–anionic surfactant mixtures are studied at various concentrations up to highly concentrated samples (ϕ ≲ 0.45) and various mixing ratios, from pure nonionic to pure anionic surfactant solutions. The scattering data reveal the formation of mixed micelles already at concentrations below the critical micelle concentration of SDS. At higher volume fractions, excluded volume effects dominate the intermicellar structuring, even for charged micelles. In consequence, at high volume fractions, the intermicellar structuring is the same for charged and uncharged micelles. At all mixing ratios, almost spherical mixed micelles form. This offers the opportunity to create a system of colloidal particles with a variable surface charge. This excludes only roughly equimolar mixing ratios (X≈ 0.4–0.6) at which the micelles significantly increase in size and ellipticity due to specific sulfate–EO interactions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Current address: Medical Department 2, Hematology/Oncology and Infectious Diseases, University Hospital of Frankfurt, D-60590 Frankfurt, Germany.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules26144136