The product of the γ-secretase processing of ephrinB2 regulates VE-cadherin complexes and angiogenesis

Presenilin-1 (PS1) gene encodes the catalytic component of γ-secretase, which proteolytically processes several type I transmembrane proteins. We here present evidence that the cytosolic peptide efnB2/CTF2 produced by the PS1/γ-secretase cleavage of efnB2 ligand promotes EphB4 receptor-dependent ang...

Full description

Saved in:
Bibliographic Details
Published inCellular and molecular life sciences : CMLS Vol. 75; no. 15; pp. 2813 - 2826
Main Authors Warren, Noel A., Voloudakis, Georgios, Yoon, Yonejung, Robakis, Nikolaos K., Georgakopoulos, Anastasios
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.08.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Presenilin-1 (PS1) gene encodes the catalytic component of γ-secretase, which proteolytically processes several type I transmembrane proteins. We here present evidence that the cytosolic peptide efnB2/CTF2 produced by the PS1/γ-secretase cleavage of efnB2 ligand promotes EphB4 receptor-dependent angiogenesis in vitro. EfnB2/CTF2 increases endothelial cell sprouting and tube formation, stimulates the formation of angiogenic complexes that include VE-cadherin, Raf-1 and Rok-α, and increases MLC2 phosphorylation. These functions are mediated by the PDZ-binding domain of efnB2. Acute downregulation of PS1 or inhibition of γ-secretase inhibits the angiogenic functions of EphB4 while absence of PS1 decreases the VE-cadherin angiogenic complexes of mouse brain. Our data reveal a mechanism by which PS1/γ-secretase regulates efnB2/EphB4 mediated angiogenesis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1420-682X
1420-9071
DOI:10.1007/s00018-018-2762-7