Breathing Rhythm Variations during Wash-In Do Not Influence Exhaled Volatile Organic Compound Profile Analyzed by an Electronic Nose
E-noses are innovative tools used for exhaled volatile organic compound (VOC) analysis, which have shown their potential in several diseases. Before obtaining a full validation of these instruments in clinical settings, a number of methodological issues still have to be established. We aimed to asse...
Saved in:
Published in | Molecules (Basel, Switzerland) Vol. 26; no. 9; p. 2695 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
04.05.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | E-noses are innovative tools used for exhaled volatile organic compound (VOC) analysis, which have shown their potential in several diseases. Before obtaining a full validation of these instruments in clinical settings, a number of methodological issues still have to be established. We aimed to assess whether variations in breathing rhythm during wash-in with VOC-filtered air before exhaled air collection reflect changes in the exhaled VOC profile when analyzed by an e-nose (Cyranose 320). We enrolled 20 normal subjects and randomly collected their exhaled breath at three different breathing rhythms during wash-in: (a) normal rhythm (respiratory rate (RR) between 12 and 18/min), (b) fast rhythm (RR > 25/min) and (c) slow rhythm (RR < 10/min). Exhaled breath was collected by a previously validated method (Dragonieri et al., J. Bras. Pneumol. 2016) and analyzed by the e-nose. Using principal component analysis (PCA), no significant variations in the exhaled VOC profile were shown among the three breathing rhythms. Subsequent linear discriminant analysis (LDA) confirmed the above findings, with a cross-validated accuracy of 45% (p = ns). We concluded that the exhaled VOC profile, analyzed by an e-nose, is not influenced by variations in breathing rhythm during wash-in. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules26092695 |