IL-2 and IL-15 blockade by BNZ-1, an inhibitor of selective γ-chain cytokines, decreases leukemic T-cell viability

Interleukin-15 (IL-15) and IL-2 drive T-cell malignancies including T-cell large granular lymphocyte leukemia (T-LGLL) and HTLV-1 driven adult T-cell leukemia (ATL). Both cytokines share common γ-chain receptors and downstream signaling pathways. T-LGLL is characterized by clonal expansion of cytoto...

Full description

Saved in:
Bibliographic Details
Published inLeukemia Vol. 33; no. 5; pp. 1243 - 1255
Main Authors Wang, T. Tiffany, Yang, Jun, Zhang, Yong, Zhang, Meili, Dubois, Sigrid, Conlon, Kevin C., Tagaya, Yutaka, Hamele, Cait E., Dighe, Shubha, Olson, Thomas L., Feith, David J., Azimi, Nazli, Waldmann, Thomas A., Loughran, Thomas P.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.05.2019
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Interleukin-15 (IL-15) and IL-2 drive T-cell malignancies including T-cell large granular lymphocyte leukemia (T-LGLL) and HTLV-1 driven adult T-cell leukemia (ATL). Both cytokines share common γ-chain receptors and downstream signaling pathways. T-LGLL is characterized by clonal expansion of cytotoxic T cells and is associated with abnormal JAK/STAT signaling. ATL is an aggressive CD4+ T-cell neoplasm associated with HTLV-1. T-LGLL and ATL share dependence on IL-2 and IL-15 for survival and both diseases lack effective therapies. BNZ-1 is a pegylated peptide designed to specifically bind the γc receptor to selectively block IL-2, IL-15, and IL-9 signaling. We hypothesized that treatment with BNZ-1 would reduce cytokine-mediated proliferation and viability. Our results demonstrated that in vitro treatment of a T-LGLL cell line and ex vivo treatment of T-LGLL patient cells with BNZ-1 inhibited cytokine-mediated viability. Furthermore, BNZ-1 blocked downstream signaling and increased apoptosis. These results were mirrored in an ATL cell line and in ex vivo ATL patient cells. Lastly, BNZ-1 drastically reduced leukemic burden in an IL-15-driven human ATL mouse xenograft model. Thus, BNZ-1 shows great promise as a novel therapy for T-LGLL, ATL, and other IL-2 or IL-15 driven hematopoietic malignancies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0887-6924
1476-5551
DOI:10.1038/s41375-018-0290-y