Conversion of CO2 into Chloropropene Carbonate Catalyzed by Iron (II) Phthalocyanine Hypercrosslinked Porous Organic Polymer
Commercial iron (II) phthalocyanine (FePc) was knitted with biphenyl using a Friedel–Crafts reaction to yield a micro-meso porous organic polymer (FePc-POP) with a specific surface area of 427 m2/g and 5.42% of iron loading. This strategy allowed for the direct synthesis of a heterogeneous catalyst...
Saved in:
Published in | Molecules (Basel, Switzerland) Vol. 25; no. 20; p. 4598 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
09.10.2020
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Commercial iron (II) phthalocyanine (FePc) was knitted with biphenyl using a Friedel–Crafts reaction to yield a micro-meso porous organic polymer (FePc-POP) with a specific surface area of 427 m2/g and 5.42% of iron loading. This strategy allowed for the direct synthesis of a heterogeneous catalyst from an iron containing monomer. The catalytic system, formed by the knitted polymer containing FePc and DMAP (4-dimethylamino pyridine) as base, results in an efficient heterogeneous catalyst in the cycloaddition of CO2 to epichlorohydrin to selectively obtain the corresponding cyclic carbonate. Thus, a TON (mmol substrate converted/mmol catalysts used) value of 2700 was reached in 3 h under mild reaction conditions (solvent free, 90 °C, 3 bar of CO2). The catalyst does not exhibit leaching during the reactions, which was attributed to the excellent stability of the metal in the macrocycle. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules25204598 |