DNA sequence-dependent formation of heterochromatin nanodomains

The mammalian epigenome contains thousands of heterochromatin nanodomains (HNDs) marked by di- and trimethylation of histone H3 at lysine 9 (H3K9me2/3), which have a typical size of 3–10 nucleosomes. However, what governs HND location and extension is only partly understood. Here, we address this is...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 13; no. 1; p. 1861
Main Authors Thorn, Graeme J., Clarkson, Christopher T., Rademacher, Anne, Mamayusupova, Hulkar, Schotta, Gunnar, Rippe, Karsten, Teif, Vladimir B.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 06.04.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The mammalian epigenome contains thousands of heterochromatin nanodomains (HNDs) marked by di- and trimethylation of histone H3 at lysine 9 (H3K9me2/3), which have a typical size of 3–10 nucleosomes. However, what governs HND location and extension is only partly understood. Here, we address this issue by introducing the chromatin hierarchical lattice framework (ChromHL) that predicts chromatin state patterns with single-nucleotide resolution. ChromHL is applied to analyse four HND types in mouse embryonic stem cells that are defined by histone methylases SUV39H1/2 or GLP, transcription factor ADNP or chromatin remodeller ATRX. We find that HND patterns can be computed from PAX3/9, ADNP and LINE1 sequence motifs as nucleation sites and boundaries that are determined by DNA sequence (e.g. CTCF binding sites), cooperative interactions between nucleosomes as well as nucleosome-HP1 interactions. Thus, ChromHL rationalizes how patterns of H3K9me2/3 are established and changed via the activity of protein factors in processes like cell differentiation. The ability to predict epigenetic regulation is an important challenge in biology. Here the authors describe heterochromatin nanodomains (HNDs) and compare four different types of H3K9me2/3-marked HNDs in mouse embryonic stem cells. They further develop a computational framework to predict genome-wide HND maps from DNA sequence and protein concentrations, at single-nucleotide resolution.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-29360-y