Antifungal activity and genomic characterization of the biocontrol agent Bacillus velezensis CMRP 4489

The development of bio-based products has increased in recent years, and species of the Bacillus genus have been widely used for product development due to their elevated production of antimicrobial molecules and resistance to extreme environmental conditions through endospore formation. In this con...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 12; no. 1; p. 17401
Main Authors Baptista, Julia Pezarini, Teixeira, Gustavo Manoel, de Jesus, Maria Luiza Abreu, Bertê, Rosiana, Higashi, Allan, Mosela, Mirela, da Silva, Daniel Vieira, de Oliveira, João Paulo, Sanches, Danilo Sipoli, Brancher, Jacques Duílio, Balbi-Peña, Maria Isabel, de Padua Pereira, Ulisses, de Oliveira, Admilton Gonçalves
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 18.10.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The development of bio-based products has increased in recent years, and species of the Bacillus genus have been widely used for product development due to their elevated production of antimicrobial molecules and resistance to extreme environmental conditions through endospore formation. In this context, the antifungal potential of Bacillus velezensis CMRP 4489 was investigated using in silico predictions of secondary metabolites in its genome and in vitro tests against the following phytopathogenic fungi: Sclerotinia sclerotiorum , Macrophomina phaseolina , and Botrytis cinerea . The in-silico predictions indicated that CMRP 4489 possesses several Biosynthetic Gene Clusters (BGCs) capable of producing molecules with antifungal properties and other non-identified BGCs. The in vitro assay results evidenced strong antifungal activity, inhibiting more than 60% of the tested fungi, and the isolate’s molecules were stable under diverse physicochemical conditions. The in vitro assay evidenced significant antifungal activity, deformation of the hyphal structure in SS, biofilm formation capacity, and swarming motility. In the colonization assay, we observed attachment, colonization, and net-shaped biofilm formation, with the strain transitioning from the seeds to nearby structures. Therefore, CMRP 4489 showed to be a potential biocontrol agent against various diseases with agronomic importance and can be used under adverse environmental conditions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-22380-0