Negative pressure wound therapy reduces the motility of Pseudomonas aeruginosa and enhances wound healing in a rabbit ear biofilm infection model

Pseudomonas aeruginosa motility, virulence factors and biofilms are known to be detrimental to wound healing. The efficacy of negative pressure wound therapy (NPWT) against P. aeruginosa has been little studied, either in vitro or in vivo. The present study evaluated the effect of negative pressure...

Full description

Saved in:
Bibliographic Details
Published inAntonie van Leeuwenhoek Vol. 111; no. 9; pp. 1557 - 1570
Main Authors Guoqi, Wang, Zhirui, Li, Song, Wang, Tongtong, Li, Lihai, Zhang, Licheng, Zhang, Peifu, Tang
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.09.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Pseudomonas aeruginosa motility, virulence factors and biofilms are known to be detrimental to wound healing. The efficacy of negative pressure wound therapy (NPWT) against P. aeruginosa has been little studied, either in vitro or in vivo. The present study evaluated the effect of negative pressure (NP) on P. aeruginosa motility in vitro, and the effect of NPWT on virulence factors and biofilms in vivo. P. aeruginosa motility was quantified under different levels of NP (atmospheric pressure, − 75, − 125, − 200 mmHg) using an in vitro model. Swimming, swarming and twitching motility were significantly inhibited by NP (− 125 and − 200 mmHg) compared with atmospheric pressure (p = 0.05). Virulence factors and biofilm components were quantified in NPWT and gauze treated groups using a rabbit ear biofilm model. Biofilm structure was studied with fluorescence microscopy and scanning electron microscopy. Additionally, viable bacterial counts and histological wound healing parameters were measured. Compared with the control, NPWT treatment resulted in a significant reduction in expression of all virulence factors assayed including exotoxin A, rhamnolipid and elastase (p = 0.01). A significant reduction of biofilm components (eDNA) (p = 0.01) was also observed in the NPWT group. The reduction of biofilm matrix was verified by fluorescence- and scanning electron-microscopy. NPWT lead to better histologic parameters (p = 0.01) and decreased bacterial counts (p = 0.05) compared with the control. NPWT treatment was demonstrated to be an effective strategy to reduce virulence factors and biofilm components, which may explain the increased wound healing observed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0003-6072
1572-9699
DOI:10.1007/s10482-018-1045-5