Cholinergic Pathway Suppresses Pulmonary Innate Immunity Facilitating Pneumonia After Stroke

Temporary immunosuppression has been identified as a major risk factor for the development of pneumonia after acute central nervous system injury. Although overactivation of the sympathetic nervous system was previously shown to mediate suppression of systemic cellular immune responses after stroke,...

Full description

Saved in:
Bibliographic Details
Published inStroke (1970) Vol. 46; no. 11; pp. 3232 - 3240
Main Authors Engel, Odilo, Akyüz, Levent, da Costa Goncalves, Andrey C, Winek, Katarzyna, Dames, Claudia, Thielke, Mareike, Herold, Susanne, Böttcher, Chotima, Priller, Josef, Volk, Hans Dieter, Dirnagl, Ulrich, Meisel, Christian, Meisel, Andreas
Format Journal Article
LanguageEnglish
Published United States 01.11.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Temporary immunosuppression has been identified as a major risk factor for the development of pneumonia after acute central nervous system injury. Although overactivation of the sympathetic nervous system was previously shown to mediate suppression of systemic cellular immune responses after stroke, the role of the parasympathetic cholinergic anti-inflammatory pathway in the antibacterial defense in lung remains largely elusive. The middle cerebral artery occlusion model in mice was used to examine the influence of the parasympathetic nervous system on poststroke immunosuppression. We used heart rate variability measurement by telemetry, vagotomy, α7 nicotinic acetylcholine receptor-deficient mice, and parasympathomimetics (nicotine, PNU282987) to measure and modulate parasympathetic activity. Here, we demonstrate a rapidly increased parasympathetic activity in mice after experimental stroke. Inhibition of cholinergic signaling by either vagotomy or by using α7 nicotinic acetylcholine receptor-deficient mice reversed pulmonary immune hyporesponsiveness and prevented pneumonia after stroke. In vivo and ex vivo studies on the role of α7 nicotinic acetylcholine receptor on different lung cells using bone marrow chimeric mice and isolated primary cells indicated that not only macrophages but also alveolar epithelial cells are a major cellular target of cholinergic anti-inflammatory signaling in the lung. Thus, cholinergic pathways play a pivotal role in the development of pulmonary infections after acute central nervous system injury.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0039-2499
1524-4628
DOI:10.1161/strokeaha.115.008989