A domain-general brain network underlying emotional and cognitive interference processing: evidence from coordinate-based and functional connectivity meta-analyses

The inability to control or inhibit emotional distractors characterizes a range of psychiatric disorders. Despite the use of a variety of task paradigms to determine the mechanisms underlying the control of emotional interference, a precise characterization of the brain regions and networks that sup...

Full description

Saved in:
Bibliographic Details
Published inBrain Structure and Function Vol. 223; no. 8; pp. 3813 - 3840
Main Authors Chen, Taolin, Becker, Benjamin, Camilleri, Julia, Wang, Li, Yu, Shuqi, Eickhoff, Simon B., Feng, Chunliang
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The inability to control or inhibit emotional distractors characterizes a range of psychiatric disorders. Despite the use of a variety of task paradigms to determine the mechanisms underlying the control of emotional interference, a precise characterization of the brain regions and networks that support emotional interference processing remains elusive. Here, we performed coordinate-based and functional connectivity meta-analyses to determine the brain networks underlying emotional interference. Paradigms addressing interference processing in the cognitive or emotional domain were included in the meta-analyses, particularly the Stroop, Flanker, and Simon tasks. Our results revealed a consistent involvement of the bilateral dorsal anterior cingulate cortex, anterior insula, left inferior frontal gyrus, and superior parietal lobule during emotional interference. Follow-up conjunction analyses identified correspondence in these regions between emotional and cognitive interference processing. Finally, the patterns of functional connectivity of these regions were examined using resting-state functional connectivity and meta-analytic connectivity modeling. These regions were strongly connected as a distributed system, primarily mapping onto fronto-parietal control, ventral attention, and dorsal attention networks. Together, the present findings indicate that a domain-general neural system is engaged across multiple types of interference processing and that regulating emotional and cognitive interference depends on interactions between large-scale distributed brain networks.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-3
ObjectType-Evidence Based Healthcare-1
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1863-2653
1863-2661
1863-2661
0340-2061
DOI:10.1007/s00429-018-1727-9