Extending the Scope of the New Variant of the Castagnoli–Cushman Cyclocondensation onto o-Methyl Benzoic Acids Bearing Various Electron-Withdrawing Groups in the α-Position

Based on the previously reported involvement of homophthalic acid monoesters in the Castagnoli–Cushman reaction-type cyclocondensation with imines, we tested a number of other o-methyl benzoic acids bearing various electron-withdrawing groups in the α-position. The majority of these substrates deliv...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 27; no. 21; p. 7211
Main Authors Guranova, Natalia, Yakovleva, Lyudmila, Bakulina, Olga, Dar’in, Dmitry, Krasavin, Mikhail
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 25.10.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Based on the previously reported involvement of homophthalic acid monoesters in the Castagnoli–Cushman reaction-type cyclocondensation with imines, we tested a number of other o-methyl benzoic acids bearing various electron-withdrawing groups in the α-position. The majority of these substrates delivered the expected tetrahydroisoquinolone adducts on activation with CDI or acetic anhydride. Homophthalic acid mononitriles displayed the highest promise as substrates for the new reaction, both in terms of scope and product yields. Homophthalic acid monoamides either gave low yields or failed to react with imines. Sulfonyl-substituted substrates gave the desired (and hitherto unknown) type of tetrahydroisoquinolines. Despite the low yields, this approach to sulfonyl-substituted tetrahydroisoquinolines appears practical as alternative syntheses based on the traditional, carboxylic acid CCR adducts would presumably be cumbersome and multistep. The azido- and nitro-substituted o-methyl benzoic acids failed to react with imines.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules27217211