PCB 95 promotes dendritic growth in primary rat hippocampal neurons via mTOR-dependent mechanisms
Polychlorinated biphenyls (PCBs), and in particular non-dioxin-like (NDL) congeners, continue to pose a significant risk to the developing nervous system. PCB 95, a prevalent NDL congener in the human chemosphere, promotes dendritic growth in rodent primary neurons by activating calcium-dependent tr...
Saved in:
Published in | Archives of toxicology Vol. 92; no. 10; pp. 3163 - 3173 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Polychlorinated biphenyls (PCBs), and in particular non-dioxin-like (NDL) congeners, continue to pose a significant risk to the developing nervous system. PCB 95, a prevalent NDL congener in the human chemosphere, promotes dendritic growth in rodent primary neurons by activating calcium-dependent transcriptional mechanisms that normally function to link activity to dendritic growth. Activity-dependent dendritic growth is also mediated by calcium-dependent translational mechanisms involving mechanistic target of rapamycin (mTOR), suggesting that the dendrite-promoting activity of PCB 95 may also involve mTOR signaling. Here, we test this hypothesis using primary neuron-glia co-cultures derived from the hippocampi of postnatal day 0 Sprague Dawley rats. PCB 95 (1 nM) activated mTOR in hippocampal cultures as evidenced by increased phosphorylation of mTOR at ser2448. Pharmacologic inhibition of mTOR signaling using rapamycin (20 nM), FK506 (5 nM), or 4EGI-1 (1 µM), and siRNA knockdown of mTOR, or the mTOR complex binding proteins, raptor or rictor, blocked PCB 95-induced dendritic growth. These data identify mTOR activation as a novel molecular mechanism contributing to the effects of PCB 95 on dendritic arborization. In light of clinical data linking gain-of-function mutations in mTOR signaling to neurodevelopmental disorders, our findings suggest that mTOR signaling may represent a convergence point for gene by environment interactions that confer risk for adverse neurodevelopmental outcomes. |
---|---|
Bibliography: | Current address: Laboratory Corporation of America (LabCorp), Research Triangle Park, NC, USA Current address: BioPlx Microbiomics, Boulder, CO, USA |
ISSN: | 0340-5761 1432-0738 |
DOI: | 10.1007/s00204-018-2285-x |