Genetic Analysis, Population Structure, and Characterisation of Multidrug-Resistant Klebsiella pneumoniae from the Al-Hofuf Region of Saudi Arabia

Multidrug-resistant Klebsiella pneumoniae (MDR-KP) is a major public health problem that is globally associated with disease outbreaks and high mortality rates. As the world seeks solutions to such pathogens, global and regional surveillance is required. The aim of the present study was to examine t...

Full description

Saved in:
Bibliographic Details
Published inPathogens (Basel) Vol. 10; no. 9; p. 1097
Main Authors Badger-Emeka, Lorina I., Al-Sultan, Abdulrahman A., Bohol, Marie Fe F., Al-Anazi, Mashael R., Al-Qahtani, Ahmed A.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 28.08.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Multidrug-resistant Klebsiella pneumoniae (MDR-KP) is a major public health problem that is globally associated with disease outbreaks and high mortality rates. As the world seeks solutions to such pathogens, global and regional surveillance is required. The aim of the present study was to examine the antimicrobial susceptibility pattern and clonal relatedness of Klebsiella pneumoniae isolates collected for a period of three years through pulse field gel electrophoresis (PFGE). Isolate IDs, antimicrobial assays, ESBL-production, and minimum inhibitory concentrations (MICs) were examined with the Vitek 2 Compact Automated System. IDs were confirmed by 16S rRNA gene sequencing, with the resulting sequences being deposited in NCBI databases. DNA was extracted and resistance genes were detected by PCR amplification with appropriate primers. Isolates were extensive (31%) and multidrug-resistant (65%). Pulsotype clusters grouped the isolates into 22 band profiles that showed no specific pattern with phenotypes. Of the isolates, 98% were ESBL-KP, 69% were carbapenem-resistant Enterobacteriaceae (CRE) strains, and 72.5% comprised the carriage of two MBLs (SIM and IMP). Integrons (ISAba1, ISAba2, and IS18) were detected in 69% of the MDR-KP. Additionally, OXA-23 was detected in 67% of the isolates. This study therefore demonstrates clonal diversity among clinical K. pneumoniae, confirming that this bacterium has access to an enormous pool of genes that confer high resistance-developing potential.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2076-0817
2076-0817
DOI:10.3390/pathogens10091097