Possibilistic Clustering-Promoting Semi-Supervised Learning for EEG-Based Emotion Recognition

The purpose of the latest brain computer interface is to perform accurate emotion recognition through the customization of their recognizers to each subject. In the field of machine learning, graph-based semi-supervised learning (GSSL) has attracted more and more attention due to its intuitive and g...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroscience Vol. 15; p. 690044
Main Authors Dan, Yufang, Tao, Jianwen, Fu, Jianjing, Zhou, Di
Format Journal Article
LanguageEnglish
Published Lausanne Frontiers Research Foundation 23.06.2021
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The purpose of the latest brain computer interface is to perform accurate emotion recognition through the customization of their recognizers to each subject. In the field of machine learning, graph-based semi-supervised learning (GSSL) has attracted more and more attention due to its intuitive and good learning performance for emotion recognition. However, the existing GSSL methods are sensitive or not robust enough to noise or outlier electroencephalogram (EEG)-based data since each individual subject may present noise or outlier EEG patterns in the same scenario. To address the problem, in this paper, we invent a Possibilistic Clustering-Promoting semi-supervised learning method for EEG-based Emotion Recognition. Specifically, it constrains each instance to have the same label membership value with its local weighted mean to improve the reliability of the recognition method. In addition, a regularization term about fuzzy entropy is introduced into the objective function, and the generalization ability of membership function is enhanced by increasing the amount of sample discrimination information, which improves the robustness of the method to noise and the outlier. A large number of experimental results on the three real datasets (i.e., DEAP, SEED, and SEED-IV) show that the proposed method improves the reliability and robustness of the EEG-based emotion recognition.
AbstractList The purpose of the latest brain computer interface is to perform accurate emotion recognition through the customization of their recognizers to each subject. In the field of machine learning, graph-based semi-supervised learning (GSSL) has attracted more and more attention due to its intuitive and good learning performance for emotion recognition. However, the existing GSSL methods are sensitive or not robust enough to noise or outlier electroencephalogram (EEG)-based data since each individual subject may present noise or outlier EEG patterns in the same scenario. To address the problem, in this paper, we invent a Possibilistic Clustering-Promoting semi-supervised learning method for EEG-based Emotion Recognition. Specifically, it constrains each instance to have the same label membership value with its local weighted mean to improve the reliability of the recognition method. In addition, a regularization term about fuzzy entropy is introduced into the objective function, and the generalization ability of membership function is enhanced by increasing the amount of sample discrimination information, which improves the robustness of the method to noise and the outlier. A large number of experimental results on the three real datasets (i.e., DEAP, SEED, and SEED-IV) show that the proposed method improves the reliability and robustness of the EEG-based emotion recognition.The purpose of the latest brain computer interface is to perform accurate emotion recognition through the customization of their recognizers to each subject. In the field of machine learning, graph-based semi-supervised learning (GSSL) has attracted more and more attention due to its intuitive and good learning performance for emotion recognition. However, the existing GSSL methods are sensitive or not robust enough to noise or outlier electroencephalogram (EEG)-based data since each individual subject may present noise or outlier EEG patterns in the same scenario. To address the problem, in this paper, we invent a Possibilistic Clustering-Promoting semi-supervised learning method for EEG-based Emotion Recognition. Specifically, it constrains each instance to have the same label membership value with its local weighted mean to improve the reliability of the recognition method. In addition, a regularization term about fuzzy entropy is introduced into the objective function, and the generalization ability of membership function is enhanced by increasing the amount of sample discrimination information, which improves the robustness of the method to noise and the outlier. A large number of experimental results on the three real datasets (i.e., DEAP, SEED, and SEED-IV) show that the proposed method improves the reliability and robustness of the EEG-based emotion recognition.
The purpose of the latest brain computer interface is to perform accurate emotion recognition through the customization of their recognizers to each subject. In the field of machine learning, graph-based semi-supervised learning (GSSL) has attracted more and more attention due to its intuitive and good learning performance for emotion recognition. However, the existing GSSL methods are sensitive or not robust enough to noise or outlier electroencephalogram (EEG)-based data since each individual subject may present noise or outlier EEG patterns in the same scenario. To address the problem, in this paper, we invent a Possibilistic Clustering-Promoting semi-supervised learning method for EEG-based Emotion Recognition. Specifically, it constrains each instance to have the same label membership value with its local weighted mean to improve the reliability of the recognition method. In addition, a regularization term about fuzzy entropy is introduced into the objective function, and the generalization ability of membership function is enhanced by increasing the amount of sample discrimination information, which improves the robustness of the method to noise and the outlier. A large number of experimental results on the three real datasets (i.e., DEAP, SEED, and SEED-IV) show that the proposed method improves the reliability and robustness of the EEG-based emotion recognition.
The purpose of the latest brain computer interface(BCI) is to perform accurate emotion recognition through the customized their recognizers to each subject. In the field of machine learning, graph-based semi-supervised learning has attracted more and more attention due to its intuitive and good learning performance for emotion recognition. However, each individual subject may present noise or outlier EEG patterns in the same scenario, the existing GSSL methods are sensitive or not enough robust to noise or outlier EEG-based data. To address the problem, in this paper, we invent a Possibilistic Clustering-Promoting semi-supervised learning for EEG-based Emotion Recognition (PCP-ER). Specifically, it constrains each instance to have the same label membership value with its local weighted mean (LWM), so as to improve the reliability of the recognition method. In addition, a regularization term about fuzzy entropy is introduced into the objective function, and the generalization ability of membership function is enhanced by increasing the amount of sample discrimination information, which improves the robustness of the method to noise and outlier. A large number of experimental results on the three real datasets (i.e., DEAP, SEED and SEED-IV) show that the proposed method improves the reliability and robustness of the EEG emotion recognition.
Author Tao, Jianwen
Dan, Yufang
Zhou, Di
Fu, Jianjing
AuthorAffiliation 2 School of Media Engineering, Communication University of Zhejiang , Hangzhou , China
1 Institute of Artificial Intelligence Application, Ningbo Polytechnic , Ningbo , China
3 Dazhou Industrial Technological Institute of Intelligent Manufacturing, Sichuan University of Arts and Science , Dazhou , China
AuthorAffiliation_xml – name: 2 School of Media Engineering, Communication University of Zhejiang , Hangzhou , China
– name: 1 Institute of Artificial Intelligence Application, Ningbo Polytechnic , Ningbo , China
– name: 3 Dazhou Industrial Technological Institute of Intelligent Manufacturing, Sichuan University of Arts and Science , Dazhou , China
Author_xml – sequence: 1
  givenname: Yufang
  surname: Dan
  fullname: Dan, Yufang
– sequence: 2
  givenname: Jianwen
  surname: Tao
  fullname: Tao, Jianwen
– sequence: 3
  givenname: Jianjing
  surname: Fu
  fullname: Fu, Jianjing
– sequence: 4
  givenname: Di
  surname: Zhou
  fullname: Zhou, Di
BookMark eNp1Uk2LFDEQDbLifugP8NbgxUuP-ahOdy6CDuO6MODiKniRkM7HmKE7GZPuhf33pndWcBc85VH16hWv8s7RSYjBIvSa4BVjnXjngg95RTElKy4wBniGzgjntIaG_Tj5B5-i85z3GHPaAX2BThnQllPRnKGf1zFn3_vB58nraj3MebLJh119neIYp4KqGzv6-mY-2HTrszXV1qoUloaLqdpsLuuPailvFnoM1Ver4y74Bb9Ez50asn318F6g758239af6-2Xy6v1h22tocVTTbUFw4E4wM70jnauV442HHRjlNFCM8Maq8E44rBrG2d4g6HHmAiHsRPsAl0ddU1Ue3lIflTpTkbl5X0hpp1UqfgbrOStYMAZ1QwYENH3nSK9cKTTuGzroGi9P2od5n60RtswJTU8En3cCf6X3MVb2dGOiJYUgbcPAin-nm2e5OiztsOggo1zlrRpGAUQmBbqmyfUfZxTKKcqLABGMReLu_bI0ql8VrJOaj-p5b5lvx8kwXKJg7yPg1ziII9xKJPkyeRfG_-f-QO4DrvJ
CitedBy_id crossref_primary_10_1109_TNSRE_2022_3175464
crossref_primary_10_1016_j_jneumeth_2023_109909
crossref_primary_10_3389_fnins_2023_1247082
crossref_primary_10_3389_fnins_2024_1458815
crossref_primary_10_1007_s40815_023_01666_z
crossref_primary_10_1109_ACCESS_2024_3454082
crossref_primary_10_1016_j_compbiomed_2022_105327
crossref_primary_10_1016_j_bspc_2023_105464
crossref_primary_10_1145_3712259
crossref_primary_10_3389_fnins_2023_1213099
crossref_primary_10_1016_j_jksuci_2023_03_014
crossref_primary_10_3389_fphys_2024_1425582
crossref_primary_10_3934_mbe_2023505
crossref_primary_10_3389_fnins_2022_855421
Cites_doi 10.1007/s11063-016-9569-z
10.1166/jmihi.2016.1923
10.1126/science.1076358
10.1007/s10115-009-0209-z
10.1080/2326263x.2014.912881
10.1109/tcds.2018.2826840
10.1109/tkde.2007.190672
10.1007/978-1-4757-2440-0
10.1007/978-94-017-2053-3_2
10.1007/s12652-019-01495-9
10.1155/2013/573734
10.24963/ijcai.2019/521
10.1162/neco.1992.4.6.888
10.1109/tamd.2015.2431497
10.1016/j.patcog.2018.10.023
10.1109/tip.2010.2044958
10.1166/jmihi.2017.2181
10.1109/ICWAPR.2007.4420738
10.1007/s10044-012-0298-2
10.1109/JPROC.2012.2197809
10.1109/t-affc.2011.15
10.1109/taffc.2018.2817622
10.1016/j.patcog.2016.07.006
10.1109/91.531779
10.1016/j.inffus.2020.09.002
10.1016/j.knosys.2016.01.021
10.1109/tcyb.2018.2797176
10.1109/91.227387
10.1109/tnn.2011.2108315
10.1007/s00186-007-0161-1
10.1016/0020-0255(86)90006-x
10.1109/tnnls.2012.2186825
10.1016/j.neunet.2015.01.009
10.3233/jifs-182561
10.1109/IJCNN.2014.6889641
10.7551/mitpress/9780262033589.001.0001
10.1007/978-3-031-01548-9
10.1109/access.2019.2937657
10.1109/taffc.2020.2994159
10.1109/taffc.2014.2339834
10.1145/1553374.1553456
10.1016/j.knosys.2019.105330
10.1109/CVPR.2016.90
10.1109/TAFFC.2018.2828819
10.1007/bf02471106
10.1137/1.9781611975673.33
10.1109/TAFFC.2017.2650899
10.1109/TPAMI.2016.2547397
10.1609/aaai.v25i1.7920
ContentType Journal Article
Copyright 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2021 Dan, Tao, Fu and Zhou.
Copyright © 2021 Dan, Tao, Fu and Zhou. 2021 Dan, Tao, Fu and Zhou
Copyright_xml – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2021 Dan, Tao, Fu and Zhou.
– notice: Copyright © 2021 Dan, Tao, Fu and Zhou. 2021 Dan, Tao, Fu and Zhou
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnins.2021.690044
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_67934632c343419bb8a1b9f18c0c5d84
PMC8281971
10_3389_fnins_2021_690044
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ACXDI
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
W2D
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c470t-2ce4d641f40fdbf28fbaf2564c5dadc9c3d35ec4df1f0f75fd6504b0019f00f93
IEDL.DBID M48
ISSN 1662-453X
1662-4548
IngestDate Wed Aug 27 01:22:26 EDT 2025
Thu Aug 21 18:00:42 EDT 2025
Sun Aug 24 03:09:16 EDT 2025
Fri Jul 25 11:38:47 EDT 2025
Thu Apr 24 23:01:21 EDT 2025
Tue Jul 01 01:39:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-2ce4d641f40fdbf28fbaf2564c5dadc9c3d35ec4df1f0f75fd6504b0019f00f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience
Edited by: Yuanpeng Zhang, Nantong University, China
These authors have contributed equally to this work
Reviewed by: Yue Zhao, Harbin Institute of Technology, China; Jin Cui, Northwest University, China
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnins.2021.690044
PMID 34276295
PQID 2544320699
PQPubID 4424402
ParticipantIDs doaj_primary_oai_doaj_org_article_67934632c343419bb8a1b9f18c0c5d84
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8281971
proquest_miscellaneous_2553244902
proquest_journals_2544320699
crossref_citationtrail_10_3389_fnins_2021_690044
crossref_primary_10_3389_fnins_2021_690044
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-23
PublicationDateYYYYMMDD 2021-06-23
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-23
  day: 23
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Frontiers in neuroscience
PublicationYear 2021
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Zhang (B44)
Joachims (B12) 1999
Tao (B31) 2019; 87
Li (B19) 2018
Wang (B36) 2019
Wang (B38) 2017; 46
Xue (B40) 2007
Li (B21) 2009
Zhao (B49) 2018
Zhou (B56) 2010; 24
Zhu (B57) 2003
Musha (B24) 1997; 1
Zheng (B51) 2019; 49
Kim (B13) 2013
Zheng (B50) 2015; 7
Koelstra (B14) 2012; 3
Atkeson (B1) 1997; 11
Bottou (B4) 1992; 4
Jenke (B11) 2014; 5
Xue (B41) 2011; 22
Zhang (B47); 193
Song (B27) 2018; 11
Belkin (B2) 2006; 7
Gorski (B9) 2007; 66
Kosko (B15) 1986; 40
Mühl (B23) 2014; 1
Liu (B22) 2012; 100
Lan (B18) 2019; 11
Zhang (B42); 37
Zhang (B43); 7
Zhu (B60) 2017
Tao (B28) 2017; 61
Zhu (B59) 2009
Chu (B6) 2017; 39
Zhang (B45) 2017; 7
Zhou (B53) 2003
Zu (B61) 2019; 13
Gao (B8) 2010; 38
Tao (B29) 2015; 69
Nie (B25) 2010; 19
Zhang (B46) 2016; 6
Zhu (B58) 2008
Bishop (B3) 2006
Wu (B39) 2018; 54
Wang (B34) 2008; 20
Li (B20) 2011
Dolan (B7) 2002; 298
Chapelle (B5) 2006
Zhang (B48); 66
Tu (B32) 2013; 16
Simonyan (B26) 2014
Zhong (B52) 2020; 2020
He (B10) 2016
Krishnapuram (B16) 1993; 1
Tao (B30) 2016; 98
Vapnik (B33) 1995
Zhou (B54) 2014
Wang (B37) 2012; 23
Wang (B35) 2019
Zhou (B55) 2018; 11
Krishnapuram (B17) 1996; 4
References_xml – volume: 46
  start-page: 1
  year: 2017
  ident: B38
  article-title: Toward-s safe semi-supervised classification: adjusted cluster assumption via clustering.
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-016-9569-z
– volume: 6
  start-page: 1337
  year: 2016
  ident: B46
  article-title: A clustering method based on fast exemplar finding and its application on brain magnetic resonance images segmentation.
  publication-title: J. Med. Imag. Health Inform.
  doi: 10.1166/jmihi.2016.1923
– volume: 298
  start-page: 1191
  year: 2002
  ident: B7
  article-title: Emotion, cognition, and behavior.
  publication-title: Science
  doi: 10.1126/science.1076358
– volume: 24
  start-page: 415
  year: 2010
  ident: B56
  article-title: Semi-supervised learning by disagreement.
  publication-title: Knowl. Inform. Syst.
  doi: 10.1007/s10115-009-0209-z
– volume: 1
  start-page: 66
  year: 2014
  ident: B23
  article-title: A survey of affective brain computer interfaces: principles, state-of-the-art, and challenges.
  publication-title: Brain Comput. Interf.
  doi: 10.1080/2326263x.2014.912881
– volume: 11
  start-page: 85
  year: 2019
  ident: B18
  article-title: Domain adaptation techniques for eeg-based emotion recognition: a comparative study on two public datasets.
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/tcds.2018.2826840
– volume: 20
  start-page: 55
  year: 2008
  ident: B34
  article-title: Label propagation through linear neighborhoods.
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/tkde.2007.190672
– start-page: 69
  year: 1995
  ident: B33
  publication-title: The Nature of Statistical Learning Theory.
  doi: 10.1007/978-1-4757-2440-0
– volume: 13
  start-page: 1217
  year: 2019
  ident: B61
  article-title: Semi-supervised classification application of remote sensing image based on block low rank images.
  publication-title: J. Front. Comput. Sci. Technol.
– start-page: 1
  year: 2014
  ident: B26
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Proceedings of the International Conference on Learning Representations (ICLR)
– volume: 11
  start-page: 11
  year: 1997
  ident: B1
  article-title: Locally weighted learning.
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/978-94-017-2053-3_2
– start-page: 1
  ident: B44
  article-title: A view-reduction based multi-view TSK fuzzy system and its application for textile color classification.
  publication-title: J. Ambient Intellig. Hum. Comput.
  doi: 10.1007/s12652-019-01495-9
– year: 2013
  ident: B13
  article-title: A review on the computational methods for emotional state estimation from the human EEG.
  doi: 10.1155/2013/573734
– start-page: 3755
  year: 2019
  ident: B35
  article-title: Partial label learning with unlabeled data
  publication-title: Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI’19)
  doi: 10.24963/ijcai.2019/521
– year: 2018
  ident: B19
  article-title: A novel neural network model based on cerebral hemispheric asymmetry for EEG emotion recognition
  publication-title: 27th International Joint Conference on Artificial Intelligence (IJCAI)
– volume: 4
  start-page: 888
  year: 1992
  ident: B4
  article-title: Local learning algorithms.
  publication-title: Neural Comput.
  doi: 10.1162/neco.1992.4.6.888
– volume: 54
  start-page: 109
  year: 2018
  ident: B39
  article-title: Semi-supervised pattern classification method based on Tri-DE-ELM.
  publication-title: Comput. Eng. Appl.
– volume: 7
  start-page: 162
  year: 2015
  ident: B50
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks.
  publication-title: IEEE Trans. Autonom. Ment. Dev.
  doi: 10.1109/tamd.2015.2431497
– volume: 87
  start-page: 296
  year: 2019
  ident: B31
  article-title: Latent multi-feature co-regression for visual recognition by discriminatively leveraging multi-source models.
  publication-title: Patt. Recogn.
  doi: 10.1016/j.patcog.2018.10.023
– volume: 38
  start-page: 1626
  year: 2010
  ident: B8
  article-title: Global and local preserving based semi-supervised support vector machine.
  publication-title: Acta Electron. Sin.
– volume: 19
  start-page: 1921
  year: 2010
  ident: B25
  article-title: Flexible manifold embedding: a framework for semi-supervised and unsupervised di- mension reduction.
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/tip.2010.2044958
– volume: 7
  start-page: 1654
  year: 2017
  ident: B45
  article-title: Brain MRI tissue classification based fuzzy clustering with competitive learning.
  publication-title: J. Med. Imag. Health Inform.
  doi: 10.1166/jmihi.2017.2181
– year: 2007
  ident: B40
  article-title: Alternative robust local embedding
  publication-title: Proceedings of the International Conference Wavelet Analysis Pattern Recognition
  doi: 10.1109/ICWAPR.2007.4420738
– start-page: 912
  year: 2003
  ident: B57
  article-title: Semi-supervised learning using Gaussian fields and harmonic functions
  publication-title: Proceedings of the 20th International Conference on Machine Learning
– volume: 16
  start-page: 213
  year: 2013
  ident: B32
  article-title: Semi-supervised feature extraction for EEG classification.
  publication-title: Patt. Analys. Appl. Paa
  doi: 10.1007/s10044-012-0298-2
– volume: 100
  start-page: 2624
  year: 2012
  ident: B22
  article-title: Robust and scalable graph-based semi-supervised learning.
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2012.2197809
– volume: 3
  start-page: 18
  year: 2012
  ident: B14
  article-title: DEAP: a database for emotion analysis using physiological signals.
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/t-affc.2011.15
– volume: 11
  start-page: 532
  year: 2018
  ident: B27
  article-title: EEG emotion recognition using dynamical graph convolutional neural networks.
  publication-title: Proc. IEEE Trans. Affect. Comput.
  doi: 10.1109/taffc.2018.2817622
– volume: 61
  start-page: 47
  year: 2017
  ident: B28
  article-title: Robust multi-source adaptation visual classification using supervised low-rank representation.
  publication-title: Patt. Recogn.
  doi: 10.1016/j.patcog.2016.07.006
– start-page: 200
  year: 1999
  ident: B12
  article-title: Transductive inference for text classification using support vector machines
  publication-title: Proceedings of the 16th International Conference on Machine Learning
– volume: 4
  start-page: 385
  year: 1996
  ident: B17
  article-title: The possibilistic c-means algorithm: insights and recommendations.
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.531779
– volume: 7
  start-page: 2399
  year: 2006
  ident: B2
  article-title: Manifold regularization: a geometric framework for learning from examples.
  publication-title: J. Mach. Learn. Res.
– volume: 66
  start-page: 170
  ident: B48
  article-title: Alzheimer’s disease multiclass diagnosis via multimodal neuroimaging embedding feature selection and fusion.
  publication-title: Inform. Fusion
  doi: 10.1016/j.inffus.2020.09.002
– volume: 98
  start-page: 76
  year: 2016
  ident: B30
  article-title: Multi-source adaptation learning with global and local regularization by exploiting joint kernel sparse representation.
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2016.01.021
– start-page: 4506
  year: 2018
  ident: B49
  article-title: Label distribution learning by optimal transport
  publication-title: Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI’18)
– volume: 49
  start-page: 1110
  year: 2019
  ident: B51
  article-title: EmotionMeter: a multimodal framework for recognizing human emotions.
  publication-title: IEEE Trans. Cybernet.
  doi: 10.1109/tcyb.2018.2797176
– volume: 1
  start-page: 98
  year: 1993
  ident: B16
  article-title: A possibilistic approach to clustering.
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.227387
– volume: 22
  start-page: 573
  year: 2011
  ident: B41
  article-title: Structural regularized support vector machine: a framework for structural large margin classifier.
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/tnn.2011.2108315
– volume: 66
  start-page: 373
  year: 2007
  ident: B9
  article-title: Biconvex sets and optimization with biconvex functions: a survey and extensions.
  publication-title: Math. Methods Operation Res.
  doi: 10.1007/s00186-007-0161-1
– volume: 40
  start-page: 165
  year: 1986
  ident: B15
  article-title: Fuzzy entropy and conditioning.
  publication-title: Inform. Sci.
  doi: 10.1016/0020-0255(86)90006-x
– volume: 23
  start-page: 689
  year: 2012
  ident: B37
  article-title: New semi-supervised classification method based on modified cluster assumption.
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/tnnls.2012.2186825
– volume: 69
  start-page: 80
  year: 2015
  ident: B29
  article-title: L1-norm locally linear representation regularization multi-source adaptation learning.
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2015.01.009
– volume: 37
  start-page: 8535
  ident: B42
  article-title: Takagi-sugeno-kang fuzzy systems with dynamic rule weights.
  publication-title: J. Intellig. Fuzzy Syst.
  doi: 10.3233/jifs-182561
– start-page: 550
  year: 2014
  ident: B54
  article-title: Spectral clustering-based local and global structure preservation for feature selection
  publication-title: Proceedings of 2014 International Joint Conference on Neural Networks
  doi: 10.1109/IJCNN.2014.6889641
– year: 2006
  ident: B5
  publication-title: Semi-Supervised Learning.
  doi: 10.7551/mitpress/9780262033589.001.0001
– year: 2009
  ident: B59
  publication-title: Introduction to Semi-Supervised Learning.
  doi: 10.1007/978-3-031-01548-9
– volume: 7
  start-page: 127600
  ident: B43
  article-title: Common and special knowledge-driven TSK fuzzy system and its modeling and application for epileptic EEG signals recognition.
  publication-title: IEEE Access
  doi: 10.1109/access.2019.2937657
– start-page: 321
  year: 2003
  ident: B53
  article-title: Learning with local and global consistency
  publication-title: Proceedings of the Advances in Neural Information Processing Systems (NIPS ’03)
– volume: 2020
  year: 2020
  ident: B52
  article-title: EEG-based emotion recognition using regularized graph neural networks.
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/taffc.2020.2994159
– volume: 5
  start-page: 327
  year: 2014
  ident: B11
  article-title: Feature extraction and selection for emotion recognition from EEG.
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/taffc.2014.2339834
– start-page: 633
  year: 2009
  ident: B21
  article-title: Semi-supervised learning using label mean
  publication-title: Proceedings of the 26th International Conference on Machine Learning
  doi: 10.1145/1553374.1553456
– year: 2006
  ident: B3
  publication-title: Pattern Recognition and Machine Learning.
– volume: 193
  ident: B47
  article-title: Clustering by transmission learning from data density to label manifold with statistical diffusion.
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2019.105330
– year: 2008
  ident: B58
  publication-title: Semi-Supervised Learning Literature Survey. Computer Science TR 1530.
– start-page: 770
  year: 2016
  ident: B10
  article-title: Deep residual learning for image recognition
  publication-title: Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  doi: 10.1109/CVPR.2016.90
– volume: 11
  start-page: 542
  year: 2018
  ident: B55
  article-title: Visually interpretable representation learning for depression recognition from facial Im-ages.
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2018.2828819
– volume: 1
  start-page: 15
  year: 1997
  ident: B24
  article-title: Feature extraction from EEGs associated with emotions.
  publication-title: Artific. Life Robot.
  doi: 10.1007/bf02471106
– start-page: 289
  year: 2019
  ident: B36
  article-title: Towards identifying causal relation between instances and labels
  publication-title: Proceedings of the 19th SIAM International Conference on Data Mining (SDM’19)
  doi: 10.1137/1.9781611975673.33
– year: 2017
  ident: B60
  article-title: Automated depression diagnosis based on deep networks to encode facial appearance and dynamics
  publication-title: Proceedings of the IEEE Transactions on Affective Computing
  doi: 10.1109/TAFFC.2017.2650899
– volume: 39
  start-page: 529
  year: 2017
  ident: B6
  article-title: Selective transfer machine for personalized facial action unit detection.
  publication-title: IEEE Trans. Patt. Analys. Mach. Intellig.
  doi: 10.1109/TPAMI.2016.2547397
– start-page: 386
  year: 2011
  ident: B20
  article-title: Improving semi-supervised support vector machines through unlabeled instances selection
  publication-title: Proceedings of the 25th AAAI Conference on Artificial Intelligence
  doi: 10.1609/aaai.v25i1.7920
SSID ssj0062842
Score 2.3560617
Snippet The purpose of the latest brain computer interface is to perform accurate emotion recognition through the customization of their recognizers to each subject....
The purpose of the latest brain computer interface(BCI) is to perform accurate emotion recognition through the customized their recognizers to each subject. In...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 690044
SubjectTerms Algorithms
Brain
Brain research
Classification
Clustering
Computer applications
Datasets
EEG
electroencephalogram
Electroencephalography
emotion recognition
Emotions
Entropy
fuzzy entropy
Implants
Learning algorithms
Machine learning
membership function
Neuroscience
Noise
semi-supervised classification
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQtEUESmWkigNSqGNPEvvYVlsqJFBFqdQLiuJXWan1VnT30H_fmTi7ai5w4Wo7ivN5PI94_A1jB1D3uu-bpnSipSs5QZVGVQ6VoY9gnYt1pPvO3743Z5fw9aq-elLqi3LCMj1wBu6wQQGCRkmngKjHrNV9ZU2stBOu9npgAkWbtw6msg5uUOnKfIaJIZg5jGmeiJtbVp8xGhQAEys0kPVPPMxpfuQTg3P6kr0YPUV-lGf4ij0LaZvtHCWMkm8f-Ec-5G4OP8V32K_zxX3OcyXaZX5ysyL-A7RK5XlOt0vX_CLczsuL1R0ph_vg-cises3RbeWz2ZfyuKfmWa7rw3-sM4sWaZddns5-npyVY-GE0kErlqV0AXwDVQQRvY1SR9tH9G0AEeu9M055VQcHPlZRxBaXA_00IP_JRCGiUa_ZVlqk8IZxE2KU3ltliBqrbY0G31qlwVpptPcFE2sgOzeyilNxi5sOowvCvhuw7wj7LmNfsE-bR-4ypcbfBh_T6mwGEhv20IAy0o0y0v1LRgq2t17bbtyi-BJi_pOiMaZgHzbduLnoxKRPYbGiMTU6nGCELFg7kYnJhKY9af57oOnWdEbZVm__xxe8Y88JFMpRk2qPbS3_rMJ79IaWdn8Q_Ee_MQre
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELVge-GCCgWxtFRGQhyQQp3YSewTaquUColq1VKpJ6L4a1mpdbbd3UP_PTOJs2ouvcZOHI_t8RvP-A0hX0TeyKYpisSwEq_kOJ4onhpQhtYLbYzPPd53_n1RnF-LXzf5TTxwW8WwykEndoratgbPyI-QSotnrFDqx_I-waxR6F2NKTRekh1QwVJOyM5JdTG7HHRxAcq383cWeDcIwHnv1wSzTB35sAjI152l38FCZEKMdqaOwH-EOscxk082obNd8jqiR3rcD_cb8sKFt2TvOIDlfPdIv9IunrM7KN8jf2ftqo99RSpmenq7QU4E2KmSWR-CF-b0yt0tkqvNEhXGylka2VbnFKAsraqfCcVdztKqT_ZDL4dwoza8I9dn1Z_T8yRmU0iMKNk6yYwTthCpF8xb7TPpdeMB8AiT28YaZbjluTPC-tQzX8IYAXgTCKqUZ8wr_p5MQhvcB0KV8z6zVnOFfFllqaSwpeZSaJ0pae2UsEGStYlU45jx4rYGkwOFX3fCr1H4dS_8Kfm2fWXZ82w8V_kEh2dbESmyuwftw7yOK64uQPOIgmeGC-Ss01o2qVY-lYZBjyV85GAY3DquW2hkO8um5PO2GFYculGa4NoN1skBhQrFsikpR5Ni9EPjkrD413F3S3RclunH5xvfJ6-wuxiSlvEDMlk_bNwnAD9rfRhn-H82Rgbp
  priority: 102
  providerName: ProQuest
Title Possibilistic Clustering-Promoting Semi-Supervised Learning for EEG-Based Emotion Recognition
URI https://www.proquest.com/docview/2544320699
https://www.proquest.com/docview/2553244902
https://pubmed.ncbi.nlm.nih.gov/PMC8281971
https://doaj.org/article/67934632c343419bb8a1b9f18c0c5d84
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYoXHqpSmnVbWFlJNRDpVAndh4-oApQAFUCraAr7alR_FpWWhy6Dwn-fWfyWDUS4pJD4jjx-DHfeMbfEHIk4jIryyQJNEvxSI7lgeShhsXQOKG0drHD887XN8nVWPyaxJMt0qW3agW4fNG0w3xS48X8-Onv80-Y8CdocYK-_eH8zCPzdhQeg63HhHhDdkAxpZjQ4FpsnAoJrMS18zPBg0KA1Bsn58tV9NRUzebfg6D9AMr_NNLFe_KuhZL0tOn7XbJl_Qeyd-rBjH54pt9oHdxZ75rvkT-jatkEwiIvMz2fr5EgAdRWMGri8fyU3tmHWXC3fsTVY2kNbalXpxRwLc3zy4CiyjM0bzL_0Nsu9qjyH8n4Iv99fhW0qRUCLVK2CiJthUlE6ARzRrkoc6p0gH6Ejk1ptNTc8NhqYVzomEuhwwDJCURY0jHmJP9Etn3l7WdCpXUuMkZxieRZaSozYVLFM6FUJDNjBoR1kix0yzuO6S_mBdgfKPyiFn6Bwi8a4Q_I980rjw3pxmuFz7B7NgWRL7u-US2mRTv9igSWIZHwSHOBBHZKZWWopAszzaDFGVSy33Vu0Y3BAtnbeMQSKQfkcPMYph_6VEpvqzWWiQGSCsmiAUl7g6L3Q_0nfnZfE3ln6MVMwy-vf_wreYvNxfi0iO-T7dVibQ8ACa3UkOyc5Tej22G9kwDXy0k4rMf8P586DOE
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V6QEuiFIQgRYWCTggma531489INSWlJS2UdSH1BOu9xUitXZoEqH-KX4jM35E-NJbr_b6NTv7zYxn9htC3ssoT_M8jgPDEtyS40SgRGgADK2X2hgfedzvfDKKhxfyx2V0uUb-tnthsKyyxcQKqG1p8B_5DlJpCc5ipb7OfgfYNQqzq20LjVotjtzdHwjZ5l8Ov8H8fuD8YHC-PwyargKBkQlbBNw4aWMZesm81Z6nXuceDL80kc2tUUZYETkjrQ898wm8KzgxEp0L5RnzSL4EkL8uRcx4j6zvDUbj0xb7YwD7Kr8a414kCAbqPCqEgWrHF9MC-cF5-BkiUiZlxxJWDQM6Xm63RvM_o3fwlDxpvFW6W6vXBllzxTOyuVtApH5zRz_Sqn60-jG_SX6Oy3lda4vUz3T_eokcDGAZg3Fd8ldM6Jm7mQZnyxkC1NxZ2rC7Tii4znQw-B5QtKqWDurmQvS0LW8qi-fk4kHk_IL0irJwLwlVznturRYK-bmSRKXSJlqkUmuuUmv7hLWSzExDbY4dNq4zCHFQ-Fkl_AyFn9XC75NPq0tmNa_HfYP3cHpWA5GSuzpQ3k6yZoVnMSCdjAU3QiJHntZpHmrlw9Qw-OIUbrLVTm7W4AQ8ZKXVffJudRpWOKZt8sKVSxwTgdcrFeN9knSUovNC3TPF9FfFFZ5iojQJX93_8Lfk0fD85Dg7PhwdvSaP8dOxHI6LLdJb3C7dNjheC_2m0XZKrh56gf0DZYFFtg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrYS4IKAgFgoYCTgghTq28_ABoT6ytBRWq5ZKPZHGr2WlNlm6u0L9a_w6ZvJYkUtvvcZOHI_H8_CMvyHkrYyKtCjiODAswSs5TgRKhAaEofVSG-Mjj_edv4_jwzP59Tw63yB_u7swmFbZycRaUNvK4Bn5DkJpCc5ipXZ8mxYxORh9nv8OsIIURlq7choNixy7mz_gvi0-HR3AWr_jfJT92D8M2goDgZEJWwbcOGljGXrJvNWep14XHowAaSJbWKOMsCJyRlofeuYT-G8waCQaGsoz5hGICcT_ZoJe0YBs7mXjyUmnB2IQ_HWsNcZ7SeAYNDFVcAlhBuWsRKxwHn4E75RJ2dOKdfGAnsXbz9f8TwGOHpIHreVKdxtWe0Q2XPmYbO2W4LVf3dD3tM4lrQ_pt8jPSbVo8m4RBpruX64QjwG0ZDBp0v_KKT11V7PgdDVHYbVwlrZIr1MKZjTNsi8BRQ1radYUGqInXapTVT4hZ3dC56dkUFale0aoct5za7VQiNWVJCqVNtEilVpzlVo7JKyjZG5amHOstnGZg7uDxM9r4udI_Lwh_pB8WL8ybzA-buu8h8uz7ojw3PWD6nqat7s9j0HqyVhwIyTi5WmdFqFWPkwNgxmn8JHtbnHzVmbAIGsOH5I362bY7RjCKUpXrbBPBBawVIwPSdJjit4P9VvK2a8aNzzFoGkSPr998NfkHmys_NvR-PgFuY8zx8w4LrbJYHm9ci_BBlvqVy2zU3Jx1_vrH0KLSes
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Possibilistic+Clustering-Promoting+Semi-Supervised+Learning+for+EEG-+based+Emotion+Recognition&rft.jtitle=Frontiers+in+neuroscience&rft.au=Dan%2C+Yufang&rft.au=Tao%2C+Jianwen&rft.au=Fu%2C+Jianjing&rft.au=Zhou%2C+Di&rft.date=2021-06-23&rft.pub=Frontiers+Research+Foundation&rft.issn=1662-4548&rft.eissn=1662-453X&rft_id=info:doi/10.3389%2Ffnins.2021.690044&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon