The Yeast Slx5-Slx8 DNA Integrity Complex Displays Ubiquitin Ligase Activity

Genetic studies in budding yeast have previously implicated SLX5 and SLX8 in the control of genome stability and sumoylation. These genes encode RING-finger domain proteins that form a complex of unknown function. Because RING-finger proteins comprise a large class of ubiquitin (Ub) ligases, Slx5 an...

Full description

Saved in:
Bibliographic Details
Published inCell cycle (Georgetown, Tex.) Vol. 6; no. 22; pp. 2800 - 2809
Main Authors Ii, Tatsuya, Fung, Jacqueline, Mullen, Janet R., Brill, Steven J.
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 15.11.2007
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Genetic studies in budding yeast have previously implicated SLX5 and SLX8 in the control of genome stability and sumoylation. These genes encode RING-finger domain proteins that form a complex of unknown function. Because RING-finger proteins comprise a large class of ubiquitin (Ub) ligases, Slx5 and Slx8 were tested for this activity. Here we show that the Slx5-Slx8 complex, but not its individual subunits, stimulates several human and yeast Ub conjugating enzymes, including Ubc1, 4, 5, and Ubc13-Mms2. The RING-finger domains of both subunits are genetically required for suppression of slx sgs1∆ synthetic-lethality, and point mutations that abolish Ub ligase activity in vitro also eliminate in vivo complementation. Targets of the in vitro ubiquitination reaction include the Slx5 and Slx8 subunits themselves, and the homologous recombination proteins Rad52 and Rad57. We propose that the Slx5-Slx8 complex functions as a two-component Ub ligase in vivo and that it controls genome stability and sumoylation via ubiquitination.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1538-4101
1551-4005
DOI:10.4161/cc.6.22.4882