A Microwave-Assisted Boudouard Reaction: A Highly Effective Reduction of the Greenhouse Gas CO2 to Useful CO Feedstock with Semi-Coke

The conversion of CO2 into more synthetically flexible CO is an effective and potential method for CO2 remediation, utilization and carbon emission reduction. In this paper, the reaction of carbon-carbon dioxide (the Boudouard reaction) was performed in a microwave fixed bed reactor using semi-coke...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 26; no. 6; p. 1507
Main Authors Dai, Huan, Zhao, Hong, Chen, Siyuan, Jiang, Biao
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 10.03.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The conversion of CO2 into more synthetically flexible CO is an effective and potential method for CO2 remediation, utilization and carbon emission reduction. In this paper, the reaction of carbon-carbon dioxide (the Boudouard reaction) was performed in a microwave fixed bed reactor using semi-coke (SC) as both the microwave absorber and reactant and was systematically compared with that heated in a conventional thermal field. The effects of the heating source, SC particle size, CO2 flow rate and additives on CO2 conversion and CO output were investigated. By microwave heating (MWH), CO2 conversion reached more than 99% while by conventional heating (CH), the maximum conversion of CO2 was approximately 29% at 900 °C. Meanwhile, for the reaction with 5 wt% barium carbonate added as a promoter, the reaction temperature was significantly reduced to 750 °C with an almost quantitative conversion of CO2. Further kinetic calculations showed that the apparent activation energy of the reaction under microwave heating was 46.3 kJ/mol, which was only one-third of that observed under conventional heating. The microwave-assisted Boudouard reaction with catalytic barium carbonate is a promising method for carbon dioxide utilization.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules26061507