XGB-DrugPred: computational prediction of druggable proteins using eXtreme gradient boosting and optimized features set
Accurate identification of drug-targets in human body has great significance for designing novel drugs. Compared with traditional experimental methods, prediction of drug-targets via machine learning algorithms has enhanced the attention of many researchers due to fast and accurate prediction. In th...
Saved in:
Published in | Scientific reports Vol. 12; no. 1; p. 5505 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.04.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Accurate identification of drug-targets in human body has great significance for designing novel drugs. Compared with traditional experimental methods, prediction of drug-targets via machine learning algorithms has enhanced the attention of many researchers due to fast and accurate prediction. In this study, we propose a machine learning-based method, namely XGB-DrugPred for accurate prediction of druggable proteins. The features from primary protein sequences are extracted by group dipeptide composition, reduced amino acid alphabet, and novel encoder pseudo amino acid composition segmentation. To select the best feature set, eXtreme Gradient Boosting-recursive feature elimination is implemented. The best feature set is provided to eXtreme Gradient Boosting (XGB), Random Forest, and Extremely Randomized Tree classifiers for model training and prediction. The performance of these classifiers is evaluated by tenfold cross-validation. The empirical results show that XGB-based predictor achieves the best results compared with other classifiers and existing methods in the literature. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-022-09484-3 |