Direct observation of disulfide isomerization in a single protein

Photochemical uncaging techniques use light to release active molecules from otherwise inert compounds. Here we expand this class of techniques by demonstrating the mechanical uncaging of a reactive species within a single protein. We proved this novel technique by capturing the regiospecific reacti...

Full description

Saved in:
Bibliographic Details
Published inNature chemistry Vol. 3; no. 11; pp. 882 - 887
Main Authors Alegre-Cebollada, Jorge, Kosuri, Pallav, Rivas-Pardo, Jaime Andrés, Fernández, Julio M.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 09.10.2011
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Photochemical uncaging techniques use light to release active molecules from otherwise inert compounds. Here we expand this class of techniques by demonstrating the mechanical uncaging of a reactive species within a single protein. We proved this novel technique by capturing the regiospecific reaction between a thiol and a vicinal disulfide bond. We designed a protein that includes a caged cysteine and a buried disulfide. The mechanical unfolding of this protein in the presence of an external nucleophile frees the single reactive cysteine residue, which now can cleave the target disulfide via a nucleophilic attack on either one of its two sulfur atoms. This produces two different and competing reaction pathways. We used single-molecule force spectroscopy to monitor the cleavage of the disulfides, which extends the polypeptide by a magnitude unambiguously associated with each reaction pathway. This allowed us to measure, for the first time, the kinetics of disulfide-bond isomerization in a protein. Multiple redox reaction pathways exist in proteins containing several cysteines. A technique termed mechanical uncaging is now demonstrated, allowing the release of a single reactive cysteine within a protein and the unequivocal observation of subsequent thiol/disulfide exchanges. Mechanical uncaging of reactive groups is useful for studying chemical kinetics in a synchronized manner.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1755-4330
1755-4349
1755-4349
DOI:10.1038/nchem.1155