Optimization of physical quantities in the autoencoder latent space
We propose a strategy for optimizing physical quantities based on exploring in the latent space of a variational autoencoder (VAE). We train a VAE model using various spin configurations formed on a two-dimensional chiral magnetic system. Three optimization algorithms are used to explore the latent...
Saved in:
Published in | Scientific reports Vol. 12; no. 1; p. 9003 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
30.05.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We propose a strategy for optimizing physical quantities based on exploring in the latent space of a variational autoencoder (VAE). We train a VAE model using various spin configurations formed on a two-dimensional chiral magnetic system. Three optimization algorithms are used to explore the latent space of the trained VAE. The first algorithm, the single-code modification algorithm, is designed for improving the local energetic stability of spin configurations to generate physically plausible spin states. The other two algorithms, the genetic algorithm and the stochastic algorithm, aim to optimize the global physical quantities, such as topological index, magnetization, energy, and directional correlation. The advantage of our method is that various optimization algorithms can be applied in the latent space containing the abstracted representation constructed by the trained VAE model. Our method based on latent space exploration is utilized for efficient physical quantity optimization. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-022-13007-5 |