Fast and cost‐effective single nucleotide polymorphism (SNP) detection in the absence of a reference genome using semideep next‐generation Random Amplicon Sequencing (RAMseq)

Biodiversity has suffered a dramatic global decline during the past decades, and monitoring tools are urgently needed providing data for the development and evaluation of conservation efforts both on a species and on a genetic level. However, in wild species, the assessment of genetic diversity is o...

Full description

Saved in:
Bibliographic Details
Published inMolecular ecology resources Vol. 18; no. 1; pp. 107 - 117
Main Authors Bayerl, Helmut, Kraus, Robert H. S., Nowak, Carsten, Foerster, Daniel W., Fickel, Joerns, Kuehn, Ralph
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.01.2018
Subjects
Online AccessGet full text
ISSN1755-098X
1755-0998
1755-0998
DOI10.1111/1755-0998.12717

Cover

More Information
Summary:Biodiversity has suffered a dramatic global decline during the past decades, and monitoring tools are urgently needed providing data for the development and evaluation of conservation efforts both on a species and on a genetic level. However, in wild species, the assessment of genetic diversity is often hampered by the lack of suitable genetic markers. In this article, we present Random Amplicon Sequencing (RAMseq), a novel approach for fast and cost‐effective detection of single nucleotide polymorphisms (SNPs) in nonmodel species by semideep sequencing of random amplicons. By applying RAMseq to the Eurasian otter (Lutra lutra), we identified 238 putative SNPs after quality filtering of all candidate loci and were able to validate 32 of 77 loci tested. In a second step, we evaluated the genotyping performance of these SNP loci in noninvasive samples, one of the most challenging genotyping applications, by comparing it with genotyping results of the same faecal samples at microsatellite markers. We compared (i) polymerase chain reaction (PCR) success rate, (ii) genotyping errors and (iii) Mendelian inheritance (population parameters). SNPs produced a significantly higher PCR success rate (75.5% vs. 65.1%) and lower mean allelic error rate (8.8% vs. 13.3%) than microsatellites, but showed a higher allelic dropout rate (29.7% vs. 19.8%). Genotyping results showed no deviations from Mendelian inheritance in any of the SNP loci. Hence, RAMseq appears to be a valuable tool for the detection of genetic markers in nonmodel species, which is a common challenge in conservation genetic studies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ISSN:1755-098X
1755-0998
1755-0998
DOI:10.1111/1755-0998.12717