Enhancing electric-field control of ferromagnetism through nanoscale engineering of high-Tc MnxGe1−x nanomesh
Voltage control of magnetism in ferromagnetic semiconductor has emerged as an appealing solution to significantly reduce the power dissipation and variability beyond current CMOS technology. However, it has been proven to be very challenging to achieve a candidate with high Curie temperature ( T c )...
Saved in:
Published in | Nature communications Vol. 7; no. 1; p. 12866 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
20.10.2016
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Voltage control of magnetism in ferromagnetic semiconductor has emerged as an appealing solution to significantly reduce the power dissipation and variability beyond current CMOS technology. However, it has been proven to be very challenging to achieve a candidate with high Curie temperature (
T
c
), controllable ferromagnetism and easy integration with current Si technology. Here we report the effective electric-field control of both ferromagnetism and magnetoresistance in unique Mn
x
Ge
1−
x
nanomeshes fabricated by nanosphere lithography, in which a
T
c
above 400 K is demonstrated as a result of size/quantum confinement. Furthermore, by adjusting Mn doping concentration, extremely giant magnetoresistance is realized from ∼8,000% at 30 K to 75% at 300 K at 4 T, which arises from a geometrically enhanced magnetoresistance effect of the unique mesh structure. Our results may provide a paradigm for fundamentally understanding the high
T
c
in ferromagnetic semiconductor nanostructure and realizing electric-field control of magnetoresistance for future spintronic applications.
Voltage control of magnetism in ferromagnetic semiconductor is appealing for spintronic applications, which is yet hindered by compound formation and low Curie temperature. Here, Nie
et al
. report electric-field control of ferromagnetism in Mn
x
Ge
1−x
nanomeshes with a Curie temperature above 400 K and controllable giant magnetoresistance. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Present address: IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, USA |
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/ncomms12866 |