Inverse Probability Weighted Cox Regression for Doubly Truncated Data
Doubly truncated data arise when event times are observed only if they fall within subject-specific, possibly random, intervals. While non-parametric methods for survivor function estimation using doubly truncated data have been intensively studied, only a few methods for fitting regression models h...
Saved in:
Published in | Biometrics Vol. 74; no. 2; pp. 481 - 487 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley-Blackwell
01.06.2018
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Doubly truncated data arise when event times are observed only if they fall within subject-specific, possibly random, intervals. While non-parametric methods for survivor function estimation using doubly truncated data have been intensively studied, only a few methods for fitting regression models have been suggested, and only for a limited number of covariates. In this article, we present a method to fit the Cox regression model to doubly truncated data with multiple discrete and continuous covariates, and describe how to implement it using existing software. The approach is used to study the association between candidate single nucleotide polymorphisms and age of onset of Parkinson's disease. |
---|---|
AbstractList | Summary Doubly truncated data arise when event times are observed only if they fall within subject-specific, possibly random, intervals. While non-parametric methods for survivor function estimation using doubly truncated data have been intensively studied, only a few methods for fitting regression models have been suggested, and only for a limited number of covariates. In this article, we present a method to fit the Cox regression model to doubly truncated data with multiple discrete and continuous covariates, and describe how to implement it using existing software. The approach is used to study the association between candidate single nucleotide polymorphisms and age of onset of Parkinson's disease. Doubly truncated data arise when event times are observed only if they fall within subject-specific, possibly random, intervals. While non-parametric methods for survivor function estimation using doubly truncated data have been intensively studied, only a few methods for fitting regression models have been suggested, and only for a limited number of covariates. In this article, we present a method to fit the Cox regression model to doubly truncated data with multiple discrete and continuous covariates, and describe how to implement it using existing software. The approach is used to study the association between candidate single nucleotide polymorphisms and age of onset of Parkinson's disease. Summary Doubly truncated data arise when event times are observed only if they fall within subject‐specific, possibly random, intervals. While non‐parametric methods for survivor function estimation using doubly truncated data have been intensively studied, only a few methods for fitting regression models have been suggested, and only for a limited number of covariates. In this article, we present a method to fit the Cox regression model to doubly truncated data with multiple discrete and continuous covariates, and describe how to implement it using existing software. The approach is used to study the association between candidate single nucleotide polymorphisms and age of onset of Parkinson's disease. Doubly truncated data arise when event times are observed only if they fall within subject-specific, possibly random, intervals. While non-parametric methods for survivor function estimation using doubly truncated data have been intensively studied, only a few methods for fitting regression models have been suggested, and only for a limited number of covariates. In this paper, we present a method to fit the Cox regression model to doubly truncated data with multiple discrete and continuous covariates, and describe how to implement it using existing software. The approach is used to study the association between candidate single nucleotide polymorphisms and age of onset of Parkinson’s disease. |
Author | Betensky, Rebecca A. Simon, David K. Mandel, Micha de Uña-Álvarez, Jacobo |
AuthorAffiliation | 2 Department of Statistics and OR and Center for Biomedical Research (CINBIO), University of Vigo, Vigo, Spain 3 Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 1 Department of Statistics, The Hebrew University of Jerusalem, Jerusalem, Israel 4 Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA |
AuthorAffiliation_xml | – name: 1 Department of Statistics, The Hebrew University of Jerusalem, Jerusalem, Israel – name: 4 Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA – name: 2 Department of Statistics and OR and Center for Biomedical Research (CINBIO), University of Vigo, Vigo, Spain – name: 3 Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA |
Author_xml | – sequence: 1 givenname: Micha surname: Mandel fullname: Mandel, Micha – sequence: 2 givenname: Jacobo surname: de Uña-Álvarez fullname: de Uña-Álvarez, Jacobo – sequence: 3 givenname: David K. surname: Simon fullname: Simon, David K. – sequence: 4 givenname: Rebecca A. surname: Betensky fullname: Betensky, Rebecca A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28886206$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUFrFDEYhoO02G314l0Z8CLC1CSTZJJLQbfVLrRUpKK3kGS_2WaZTWoyU91_b9ZtF-vBXELI8z28H-8h2gsxAEIvCD4m5byzPq6OCW1b8gRNCGekxoziPTTBGIu6YeT7ATrMeVmeimP6FB1QKaWgWEzQ2SzcQcpQfU7RGut7P6yrb-AXNwPMq2n8VX2BRYKcfQxVF1N1Gkfbr6vrNAZnNsypGcwztN-ZPsPz-_sIff14dj09ry-uPs2m7y9qx1pMaqtER4VjhCsQ3FghgXcdMcbSRgrLwQgsCXWdcd1cAsNdaw1WghkqLDDXHKGTrfd2tCuYOwhDMr2-TX5l0lpH4_Xjn-Bv9CLeaS5ZU1Yvgjf3ghR_jJAHvfLZQd-bAHHMmqim5Q1WcoO-_gddxjGFsp6mmKtGMo55od5uKZdizgm6XRiC9aYdvWlH_2mnwK_-jr9DH-ooANkCP30P6_-o9IfZ1eWD9OV2ZpmHmHYzJZ0qXtX8Bqt4plo |
CitedBy_id | crossref_primary_10_1016_j_csda_2019_106862 crossref_primary_10_1016_j_jaci_2023_06_015 crossref_primary_10_1371_journal_pone_0253413 crossref_primary_10_1080_02664763_2023_2178641 crossref_primary_10_1007_s11424_024_3288_8 crossref_primary_10_1002_sim_9828 crossref_primary_10_1007_s42952_020_00057_6 crossref_primary_10_1002_bimj_201800323 crossref_primary_10_1007_s10114_024_3381_x crossref_primary_10_1111_biom_13451 crossref_primary_10_12677_AAM_2021_1012464 crossref_primary_10_1111_biom_13162 crossref_primary_10_3150_20_BEJ1236 crossref_primary_10_1007_s42952_021_00113_9 crossref_primary_10_1177_09622802211023955 crossref_primary_10_1080_02331888_2020_1772788 crossref_primary_10_1080_03610918_2023_2266158 |
Cites_doi | 10.1017/CBO9780511802843 10.1080/01621459.1999.10474187 10.2307/2532891 10.1016/j.stamet.2015.11.002 10.1089/ars.2008.2241 10.1080/01621459.2012.746073 10.1093/hmg/ddm159 10.1080/01621459.1989.10478780 10.1016/j.csda.2014.03.017 10.1016/j.cell.2011.02.010 10.1007/s10985-013-9287-z 10.1093/biomet/64.2.225 10.1007/s10463-008-0192-2 10.1093/biomet/asp026 10.1198/jasa.2009.tm08614 10.1214/aos/1176346585 10.1007/s00180-012-0318-0 10.1186/1471-2350-12-69 10.1111/j.2517-6161.1976.tb01597.x 10.18637/jss.v037.i07 10.1093/biomet/asr072 10.1002/sim.3938 10.1111/j.1541-0420.2009.01287.x 10.2307/3316134 10.1016/j.spl.2008.09.026 10.1214/aos/1176346584 |
ContentType | Journal Article |
Copyright | Copyright © 2018 International Biometric Society 2017, The International Biometric Society 2017, The International Biometric Society. 2018, The International Biometric Society |
Copyright_xml | – notice: Copyright © 2018 International Biometric Society – notice: 2017, The International Biometric Society – notice: 2017, The International Biometric Society. – notice: 2018, The International Biometric Society |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION JQ2 7X8 5PM |
DOI | 10.1111/biom.12771 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Computer Science Collection MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE ProQuest Computer Science Collection MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Biology Mathematics |
EISSN | 1541-0420 |
EndPage | 487 |
ExternalDocumentID | 10_1111_biom_12771 28886206 BIOM12771 45092889 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS094610 |
GroupedDBID | --- -~X .3N .4S .DC .GA 05W 0R~ 10A 1OC 23N 2QV 33P 36B 3SF 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 A8Z AAESR AAEVG AAHHS AAJUZ AANLZ AAONW AAPXW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABFAN ABHUG ABJNI ABLJU ABMNT ABPPZ ABPVW ABWRO ABXSQ ABXVV ABYWD ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACIWK ACMTB ACNCT ACPOU ACPRK ACSCC ACTMH ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIPN ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFGKR AFPWT AFVGU AFVYC AFZJQ AGJLS AGTJU AHMBA AIAGR AIURR AIWBW AJAOE AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARCSS ATUGU AUFTA AZBYB AZVAB BAFTC BCRHZ BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DXH EAD EAP EBC EBD EBS EDO EJD EMB EMK EMOBN EST ESTFP ESX F00 F01 F04 F5P FD6 G-S G.N GODZA GS5 H.T H.X HZI HZ~ IX1 J0M JAC JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OWPYF P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL ROX RX1 RXW SUPJJ SV3 TN5 TUS UB1 V8K VQA W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WRC WXSBR WYISQ X6Y XBAML XG1 XSW ZZTAW ~02 ~IA ~KM ~WT .GJ .Y3 2AX 3-9 31~ 3V. 7X7 88E 88I 8AF 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAHBH AAUAY ABBHK ABJCF ABTAH ABUWG ACBWZ ACKIV ADACV ADODI ADULT AELPN AEUPB AFDVO AFFTP AFKRA AIBGX ALEEW ALIPV APXXL ARAPS ASPBG AS~ AVWKF AZFZN AZQEC BBNVY BGLVJ BHPHI BPHCQ BVXVI CAG CCPQU COF DQDLB DSRWC DWQXO ECEWR FEDTE FXEWX FYUFA GNUQQ HCIFZ HF~ HGD HMCUK HQ6 HVGLF IHE IPSME JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD K6V K7- L6V LK8 M1P M2P M7P M7S NHB OIG OJZSN P0- P62 PROAC PSQYO PTHSS Q2X RNS RWL SA0 TAE UAP UKHRP ZGI ZXP ZY4 AAZSN CGR CUY CVF ECM EIF KOP NPM AAYXX ABEJV CITATION JQ2 7X8 5PM |
ID | FETCH-LOGICAL-c4701-b96f26c4159e65ab68e5ff1aab2386b5ea60812cfacfd8e40f7ba0964a26be4c3 |
IEDL.DBID | DR2 |
ISSN | 0006-341X |
IngestDate | Tue Sep 17 21:26:18 EDT 2024 Thu Oct 24 22:42:39 EDT 2024 Wed Nov 06 07:54:22 EST 2024 Tue Oct 29 03:15:30 EDT 2024 Wed Oct 16 00:50:06 EDT 2024 Sat Aug 24 01:08:40 EDT 2024 Wed Mar 06 03:17:52 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | U statistic Biased data Right truncation Inverse weighting |
Language | English |
License | 2017, The International Biometric Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4701-b96f26c4159e65ab68e5ff1aab2386b5ea60812cfacfd8e40f7ba0964a26be4c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4270-9777 |
OpenAccessLink | https://europepmc.org/articles/pmc5843502?pdf=render |
PMID | 28886206 |
PQID | 2059384505 |
PQPubID | 35366 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5843502 proquest_miscellaneous_1937530982 proquest_journals_2059384505 crossref_primary_10_1111_biom_12771 pubmed_primary_28886206 wiley_primary_10_1111_biom_12771_BIOM12771 jstor_primary_45092889 |
PublicationCentury | 2000 |
PublicationDate | June 2018 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: June 2018 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Biometrics |
PublicationTitleAlternate | Biometrics |
PublicationYear | 2018 |
Publisher | Wiley-Blackwell Blackwell Publishing Ltd |
Publisher_xml | – name: Wiley-Blackwell – name: Blackwell Publishing Ltd |
References | 1989; 84 2010; 37 2013; 28 2013; 108 1999; 27 2002; 8 1997 1996; 52 1977; 64 2016; 30 2011; 12 2016; 93 2012; 99 2010; 62 2014; 20 2007; 16 2009; 11 2010; 66 2009; 79 2009; 96 2010; 29 2017 2015 1999; 94 1976; 38 2009; 104 2011; 144 1985; 13 Shen (2024011406322594000_biom12771-bib-0020) 2017 Therneau (2024011406322594000_biom12771-bib-0024) 2015 Shen (2024011406322594000_biom12771-bib-0018) 2013; 28 Thomas (2024011406322594000_biom12771-bib-0025) 2007; 16 Clark (2024011406322594000_biom12771-bib-0004) 2009; 11 Huang (2024011406322594000_biom12771-bib-0007) 2012; 99 Alioum (2024011406322594000_biom12771-bib-0001) 1996; 52 Sherer (2024011406322594000_biom12771-bib-0022) 2002; 8 Turnbull (2024011406322594000_biom12771-bib-0027) 1976; 38 Kalbfleisch (2024011406322594000_biom12771-bib-0010) 1989; 84 Efron (2024011406322594000_biom12771-bib-0006) 1999; 94 Shen (2024011406322594000_biom12771-bib-0019) 2016; 30 Shen (2024011406322594000_biom12771-bib-0017) 2010; 62 Qin (2024011406322594000_biom12771-bib-0015) 2010; 66 Davison (2024011406322594000_biom12771-bib-0005) 1997 Iyengar (2024011406322594000_biom12771-bib-0009) 1999; 27 Austin (2024011406322594000_biom12771-bib-0002) 2014; 20 Vardi (2024011406322594000_biom12771-bib-0028) 1985; 13 Moreira (2024011406322594000_biom12771-bib-0012) 2010; 29 Moreira (2024011406322594000_biom12771-bib-0014) 2016; 93 Kim (2024011406322594000_biom12771-bib-0011) 2013; 108 Moreira (2024011406322594000_biom12771-bib-0013) 2010; 37 Shen (2024011406322594000_biom12771-bib-0016) 2009; 79 Shen (2024011406322594000_biom12771-bib-0021) 2009; 104 Tsai (2024011406322594000_biom12771-bib-0026) 2009; 96 Shin (2024011406322594000_biom12771-bib-0023) 2011; 144 Woodroofe (2024011406322594000_biom12771-bib-0029) 1985; 13 Hyde (2024011406322594000_biom12771-bib-0008) 1977; 64 Clark (2024011406322594000_biom12771-bib-0003) 2011; 12 |
References_xml | – year: 1997 publication-title: Bootstrap Methods and Their Application – volume: 13 start-page: 178 year: 1985 end-page: 203 article-title: Empirical distributions in selection bias models publication-title: The Annals of Statistics – volume: 11 start-page: 509 year: 2009 end-page: 528 article-title: Transcribe to survive: Transcriptional control of antioxidant defense programs for neuroprotection in Parkinson's disease publication-title: Antioxid Redox Signal – volume: 30 start-page: 15 year: 2016 end-page: 30 article-title: Analysis of transformation models with doubly truncated data publication-title: Statistical Methodology – volume: 84 start-page: 360 year: 1989 end-page: 372 article-title: Inference based on retrospective ascertainment: An analysis of the data on transfusion‐related AIDS publication-title: Journal of the American Statistical Association – volume: 29 start-page: 3147 year: 2010 end-page: 3159 article-title: A semiparametric estimator of survival for doubly truncated data publication-title: Statistics in Medicine – volume: 16 year: 2007 article-title: Parkinson's disease publication-title: Human Molecular Genetics – volume: 144 start-page: 689 year: 2011 end-page: 702 article-title: PARIS (ZNF746) repression of PGC‐1a contributes to neurodegeneration inParkinson's disease publication-title: Cell – volume: 62 start-page: 835 year: 2010 end-page: 853 article-title: Nonparametric analysis of doubly truncated data publication-title: Annals of the Institute of Statistical Mathematics – year: 2017 article-title: Pseudo maximum likelihood estimation for the Cox model with doubly truncated data publication-title: Statistical Papers – volume: 99 start-page: 199 year: 2012 end-page: 210 article-title: A maximum pseudo‐profile likelihood estimator for the Cox model with length‐biased sampling publication-title: Biometrika – volume: 8 start-page: 192 year: 2002 end-page: 197 article-title: Environment, mitochondria, and Parkinson's disease publication-title: The Neuroscientist – volume: 104 start-page: 1192 year: 2009 end-page: 1202 article-title: Analyzing length‐biased data with semiparametric transformation and accelerated failure time models publication-title: Journal of the American Statistical Association – volume: 20 start-page: 335 year: 2014 end-page: 354 article-title: Computationally simple estimation and improved efficiency for special cases of double truncation publication-title: Lifetime Data Analysis – volume: 94 start-page: 824 year: 1999 end-page: 834 article-title: Nonparametric methods for doubly truncated data publication-title: Journal of the American Statistical Association – volume: 28 start-page: 581 year: 2013 end-page: 596 article-title: Regression analysis of interval censored and doubly truncated data with linear transformation models publication-title: Computational Statistics – volume: 79 start-page: 457 year: 2009 end-page: 465 article-title: Hazards regression for length‐biased and right‐censored data publication-title: Statistics & Probability Letters – volume: 108 start-page: 217 year: 2013 end-page: 227 article-title: A Unified approach to semiparametric transformation models under general biased sampling schemes publication-title: Journal of the American Statistical Association – volume: 52 start-page: 512 year: 1996 end-page: 524 article-title: A proportional hazards model for arbitrarily censored and truncated data publication-title: Biometrics – volume: 37 start-page: 1 year: 2010 end-page: 20 article-title: DTDA: An R package to analyze randomly truncated data publication-title: Journal of Statistical Software – volume: 38 start-page: 290 year: 1976 end-page: 295 article-title: The empirical distribution function with arbitrarily grouped, censored and truncated data publication-title: Journal of the Royal Statistical Society – volume: 96 start-page: 601 year: 2009 end-page: 615 article-title: Pseudo‐partial likelihood for proportional hazards models with biased‐sampling data publication-title: Biometrika – volume: 13 start-page: 163 year: 1985 end-page: 177 article-title: Estimating a distribution function with truncated data publication-title: The Annals of Statistics – volume: 27 start-page: 833 year: 1999 end-page: 841 article-title: Fisher information in weighted distributions publication-title: Canadian Journal of Statistics – volume: 66 start-page: 382 year: 2010 end-page: 392 article-title: Statistical Methods for Analyzing Right‐Censored Length‐Biased Data under Cox Model publication-title: Biometrics – volume: 64 start-page: 225 year: 1977 end-page: 230 article-title: Testing survival under right censoring and left truncation publication-title: Biometrika – volume: 12 year: 2011 article-title: Association of PGC‐1alphapolymorphisms with age of onset and risk of Parkinson's disease publication-title: BMC Medical Genetics – volume: 93 start-page: 294 year: 2016 end-page: 307 article-title: Nonparametric regression with doubly truncated data publication-title: Computational Statistics & Data Analysis – year: 2015 – volume-title: Bootstrap Methods and Their Application year: 1997 ident: 2024011406322594000_biom12771-bib-0005 doi: 10.1017/CBO9780511802843 contributor: fullname: Davison – volume: 94 start-page: 824 year: 1999 ident: 2024011406322594000_biom12771-bib-0006 article-title: Nonparametric methods for doubly truncated data publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1999.10474187 contributor: fullname: Efron – volume: 52 start-page: 512 year: 1996 ident: 2024011406322594000_biom12771-bib-0001 article-title: A proportional hazards model for arbitrarily censored and truncated data publication-title: Biometrics doi: 10.2307/2532891 contributor: fullname: Alioum – year: 2017 ident: 2024011406322594000_biom12771-bib-0020 article-title: Pseudo maximum likelihood estimation for the Cox model with doubly truncated data publication-title: Statistical Papers contributor: fullname: Shen – volume: 30 start-page: 15 year: 2016 ident: 2024011406322594000_biom12771-bib-0019 article-title: Analysis of transformation models with doubly truncated data publication-title: Statistical Methodology doi: 10.1016/j.stamet.2015.11.002 contributor: fullname: Shen – volume: 11 start-page: 509 year: 2009 ident: 2024011406322594000_biom12771-bib-0004 article-title: Transcribe to survive: Transcriptional control of antioxidant defense programs for neuroprotection in Parkinson's disease publication-title: Antioxid Redox Signal doi: 10.1089/ars.2008.2241 contributor: fullname: Clark – volume: 108 start-page: 217 year: 2013 ident: 2024011406322594000_biom12771-bib-0011 article-title: A Unified approach to semiparametric transformation models under general biased sampling schemes publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.2012.746073 contributor: fullname: Kim – volume: 16 year: 2007 ident: 2024011406322594000_biom12771-bib-0025 article-title: Parkinson's disease publication-title: Human Molecular Genetics doi: 10.1093/hmg/ddm159 contributor: fullname: Thomas – volume: 84 start-page: 360 year: 1989 ident: 2024011406322594000_biom12771-bib-0010 article-title: Inference based on retrospective ascertainment: An analysis of the data on transfusion-related AIDS publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1989.10478780 contributor: fullname: Kalbfleisch – volume: 8 start-page: 192 year: 2002 ident: 2024011406322594000_biom12771-bib-0022 article-title: Environment, mitochondria, and Parkinson's disease publication-title: The Neuroscientist contributor: fullname: Sherer – volume: 93 start-page: 294 year: 2016 ident: 2024011406322594000_biom12771-bib-0014 article-title: Nonparametric regression with doubly truncated data publication-title: Computational Statistics & Data Analysis doi: 10.1016/j.csda.2014.03.017 contributor: fullname: Moreira – volume: 144 start-page: 689 year: 2011 ident: 2024011406322594000_biom12771-bib-0023 article-title: PARIS (ZNF746) repression of PGC-1a contributes to neurodegeneration inParkinson's disease publication-title: Cell doi: 10.1016/j.cell.2011.02.010 contributor: fullname: Shin – volume: 20 start-page: 335 year: 2014 ident: 2024011406322594000_biom12771-bib-0002 article-title: Computationally simple estimation and improved efficiency for special cases of double truncation publication-title: Lifetime Data Analysis doi: 10.1007/s10985-013-9287-z contributor: fullname: Austin – volume: 64 start-page: 225 year: 1977 ident: 2024011406322594000_biom12771-bib-0008 article-title: Testing survival under right censoring and left truncation publication-title: Biometrika doi: 10.1093/biomet/64.2.225 contributor: fullname: Hyde – volume: 62 start-page: 835 year: 2010 ident: 2024011406322594000_biom12771-bib-0017 article-title: Nonparametric analysis of doubly truncated data publication-title: Annals of the Institute of Statistical Mathematics doi: 10.1007/s10463-008-0192-2 contributor: fullname: Shen – volume: 96 start-page: 601 year: 2009 ident: 2024011406322594000_biom12771-bib-0026 article-title: Pseudo-partial likelihood for proportional hazards models with biased-sampling data publication-title: Biometrika doi: 10.1093/biomet/asp026 contributor: fullname: Tsai – volume: 104 start-page: 1192 year: 2009 ident: 2024011406322594000_biom12771-bib-0021 article-title: Analyzing length-biased data with semiparametric transformation and accelerated failure time models publication-title: Journal of the American Statistical Association doi: 10.1198/jasa.2009.tm08614 contributor: fullname: Shen – volume: 13 start-page: 178 year: 1985 ident: 2024011406322594000_biom12771-bib-0028 article-title: Empirical distributions in selection bias models publication-title: The Annals of Statistics doi: 10.1214/aos/1176346585 contributor: fullname: Vardi – volume: 28 start-page: 581 year: 2013 ident: 2024011406322594000_biom12771-bib-0018 article-title: Regression analysis of interval censored and doubly truncated data with linear transformation models publication-title: Computational Statistics doi: 10.1007/s00180-012-0318-0 contributor: fullname: Shen – volume: 12 year: 2011 ident: 2024011406322594000_biom12771-bib-0003 article-title: Association of PGC-1alphapolymorphisms with age of onset and risk of Parkinson's disease publication-title: BMC Medical Genetics doi: 10.1186/1471-2350-12-69 contributor: fullname: Clark – volume: 38 start-page: 290 year: 1976 ident: 2024011406322594000_biom12771-bib-0027 article-title: The empirical distribution function with arbitrarily grouped, censored and truncated data publication-title: Journal of the Royal Statistical Society doi: 10.1111/j.2517-6161.1976.tb01597.x contributor: fullname: Turnbull – year: 2015 ident: 2024011406322594000_biom12771-bib-0024 publication-title: A Package for Survival Analysis in S. version 2.38 contributor: fullname: Therneau – volume: 37 start-page: 1 year: 2010 ident: 2024011406322594000_biom12771-bib-0013 article-title: DTDA: An R package to analyze randomly truncated data publication-title: Journal of Statistical Software doi: 10.18637/jss.v037.i07 contributor: fullname: Moreira – volume: 99 start-page: 199 year: 2012 ident: 2024011406322594000_biom12771-bib-0007 article-title: A maximum pseudo-profile likelihood estimator for the Cox model with length-biased sampling publication-title: Biometrika doi: 10.1093/biomet/asr072 contributor: fullname: Huang – volume: 29 start-page: 3147 year: 2010 ident: 2024011406322594000_biom12771-bib-0012 article-title: A semiparametric estimator of survival for doubly truncated data publication-title: Statistics in Medicine doi: 10.1002/sim.3938 contributor: fullname: Moreira – volume: 66 start-page: 382 year: 2010 ident: 2024011406322594000_biom12771-bib-0015 article-title: Statistical Methods for Analyzing Right-Censored Length-Biased Data under Cox Model publication-title: Biometrics doi: 10.1111/j.1541-0420.2009.01287.x contributor: fullname: Qin – volume: 27 start-page: 833 year: 1999 ident: 2024011406322594000_biom12771-bib-0009 article-title: Fisher information in weighted distributions publication-title: Canadian Journal of Statistics doi: 10.2307/3316134 contributor: fullname: Iyengar – volume: 79 start-page: 457 year: 2009 ident: 2024011406322594000_biom12771-bib-0016 article-title: Hazards regression for length-biased and right-censored data publication-title: Statistics & Probability Letters doi: 10.1016/j.spl.2008.09.026 contributor: fullname: Shen – volume: 13 start-page: 163 year: 1985 ident: 2024011406322594000_biom12771-bib-0029 article-title: Estimating a distribution function with truncated data publication-title: The Annals of Statistics doi: 10.1214/aos/1176346584 contributor: fullname: Woodroofe |
SSID | ssj0009502 |
Score | 2.3873081 |
Snippet | Doubly truncated data arise when event times are observed only if they fall within subject-specific, possibly random, intervals. While non-parametric methods... Summary Doubly truncated data arise when event times are observed only if they fall within subject‐specific, possibly random, intervals. While non‐parametric... Summary Doubly truncated data arise when event times are observed only if they fall within subject-specific, possibly random, intervals. While non-parametric... Doubly truncated data arise when event times are observed only if they fall within subject‐specific, possibly random, intervals. While non‐parametric methods... |
SourceID | pubmedcentral proquest crossref pubmed wiley jstor |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 481 |
SubjectTerms | Age of Onset Biased data BIOMETRIC METHODOLOGY: DISCUSSION PAPER Biometry - methods Humans Inverse weighting Movement disorders Neurodegenerative diseases Parkinson Disease - genetics Parkinson's disease Polymorphism, Single Nucleotide Probability Proportional Hazards Models Regression Analysis Regression models Right truncation Single-nucleotide polymorphism Software Statistical analysis U statistic |
Title | Inverse Probability Weighted Cox Regression for Doubly Truncated Data |
URI | https://www.jstor.org/stable/45092889 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.12771 https://www.ncbi.nlm.nih.gov/pubmed/28886206 https://www.proquest.com/docview/2059384505 https://search.proquest.com/docview/1937530982 https://pubmed.ncbi.nlm.nih.gov/PMC5843502 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ha9QwFH-MgTA_OD2dVueI6CehR5pL0xb2Zc6NTTgFcXBfpCTti4rSG9c79PzrfUmu9W4bA_1WyGsgee81v6S__B7Aq8IB-bzCmJu6jmVtbJxLzGJe6KqggNHGV28Yv1dnF_LdJJ1swWF3FyboQ_QHbi4z_PfaJbg27VqSu-vpw0Rk_gJ5Msocn-vtR7GmuMuDVLgjd8lkstImdTSev69urEaBkHgT1LzOmFxHsn4pOt2Fz90gAgPl-3AxN8Pq9xV9x_8d5X24t8Ko7CgE1QPYwmYAd0LVyuUA7o57qdd2ADsOrga154dw4mQ7Zi0yV6cmKIAv2U9_-oo1O57-YjP8Epi3DSO4zOrpwvxYsvls4cRpycYxVh_BxenJp-OzeFWoIa5kxpPYFMoKVREWKFCl2qgcU2sTrQ0BAmVS1IqQh6isrmydo-Q2M5r2TlILZVBWoz3YbqYNPgGGHEVqCXQmycgp3xfCZLVJa6HTjFuJEbzsHFZeBj2OstvHuLkq_VxFsOd92ZtIwkUUk0UE-51zy1WytqVwZQ1zMkkjeNE3U5q5fye6wemiLQnn0saOF7mI4HGIhb5z6pj2hVxFkG1ESW_gJLw3W5pvX72UN8G_EcVpBK99ENwypPLN-Yexf3r6L8bPYIcgXh7IbfuwTf7E5wSj5ubAp8sfjd4ZkA |
link.rule.ids | 230,315,783,787,888,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6hIcR44EdhEBhgBE9IqRzXcZJHGJs6WIeENqlvkZ3YgJjSqWkF5a_nzk5DCwgJ3iL5Ysm-u_iz8_k7gBcFAfm8sjE3dR3L2rg4lzaLeaGrAgNGG1-9YXKqxufy7TSddtwcugsT9CH6AzfKDP-9pgSnA-mNLKf76cNEZHSD_Crm-4gqN7z5IDY0d3kQCyd6l0ymnTopEXl-vru1HgVK4p_A5u-cyU0s6xejo1uh4mrrNQyJg_JluFyYYfX9F4XH_x7nbbjZwVT2KsTVHbhimwFcC4UrVwO4MenVXtsB7BJiDYLPd-GQlDvmrWVUqiaIgK_YV38Aa2t2MPvG5vZjIN82DBEzq2dLc7Fii_mS9GnRhkir9-D86PDsYBx3tRriSmY8iU2hnFAVwoHCqlQbldvUuURrg5hAmdRqheBDVE5Xrs6t5C4zGrdPUgtlrKxGe7DTzBr7AJjlVqQOcWeSjEj8vhAmq01aC51m3EkbwfO1x8rLIMlRrrcyNFeln6sI9rwzexOJ0AjDsohgf-3dssvXthRU2TBHkzSCZ30zZhr9PtGNnS3bEqEu7u14kYsI7odg6DvHjnFryFUE2VaY9Aak4r3d0nz-5NW8EQGOMFAjeOmj4C9DKl8fv5_4p4f_YvwUro_PJiflyfHpu0ewi4gvD1y3fdhB39rHiKoW5onPnR__rR2o |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fi9QwEMeH40Q5H_yxelo9taJPQpc0m6Yt-KLnLXfqniIe7IuUpEnuDqV77A90_eudSbZ1V0XQt0KmgTQzzSft5DsAT0sC-aK2CdPGJMJolxTC5gkrVV2iwyjtqzeMjuXhiXg9zsZb8Lw9CxP0IboPbhQZ_n1NAX5h3FqQ0_H0fspzOkB-SUhEX0KiD3xNcpcFrXDK7hLpeCVOSnk8P-_dWI5CRuKfWPP3lMl1lPVr0fA6fGpHEVJQPvcXc92vv_8i8Pi_w7wB11aQGr8IXnUTtmzTg8uhbOWyB1dHndbrrAc7xKtB7vkWHJBux3RmYypUEyTAl_FX__nVmnh_8i2e2tOQetvEyMuxmSz0l2U8ny5InRZtKGX1NpwMDz7uHyarSg1JLXKWJrqUjssaYaC0MlNaFjZzLlVKIxFInVklET147VTtTGEFc7lWuHkSikttRT3Yhe1m0ti7EFtmeeaQOtN0QNL3Jde50ZnhKsuZEzaCJ-2EVRdBkKNqNzL0rCr_rCLY9XPZmQgEI3TKMoK9dnKrVbTOKk51DQs0ySJ43DVjnNHPE9XYyWJWIejizo6VBY_gTvCFrnPsGDeGTEaQb3hJZ0Aa3pstzfmZ1_JG_hugn0bwzDvBX4ZUvTx6N_JX9_7F-BFcef9qWL09On5zH3YQ94qQ6LYH2zi19gEi1Vw_9JHzA5kCHFc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inverse+probability+weighted+Cox+regression+for+doubly+truncated+data&rft.jtitle=Biometrics&rft.au=Mandel%2C+Micha&rft.au=de+U%C3%B1a-%C3%81lvarez%2C+Jacobo&rft.au=Simon%2C+David+K&rft.au=Betensky%2C+Rebecca+A&rft.date=2018-06-01&rft.eissn=1541-0420&rft.volume=74&rft.issue=2&rft.spage=481&rft_id=info:doi/10.1111%2Fbiom.12771&rft_id=info%3Apmid%2F28886206&rft.externalDocID=28886206 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon |