Inverse Probability Weighted Cox Regression for Doubly Truncated Data

Doubly truncated data arise when event times are observed only if they fall within subject-specific, possibly random, intervals. While non-parametric methods for survivor function estimation using doubly truncated data have been intensively studied, only a few methods for fitting regression models h...

Full description

Saved in:
Bibliographic Details
Published inBiometrics Vol. 74; no. 2; pp. 481 - 487
Main Authors Mandel, Micha, de Uña-Álvarez, Jacobo, Simon, David K., Betensky, Rebecca A.
Format Journal Article
LanguageEnglish
Published United States Wiley-Blackwell 01.06.2018
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Doubly truncated data arise when event times are observed only if they fall within subject-specific, possibly random, intervals. While non-parametric methods for survivor function estimation using doubly truncated data have been intensively studied, only a few methods for fitting regression models have been suggested, and only for a limited number of covariates. In this article, we present a method to fit the Cox regression model to doubly truncated data with multiple discrete and continuous covariates, and describe how to implement it using existing software. The approach is used to study the association between candidate single nucleotide polymorphisms and age of onset of Parkinson's disease.
AbstractList Summary Doubly truncated data arise when event times are observed only if they fall within subject-specific, possibly random, intervals. While non-parametric methods for survivor function estimation using doubly truncated data have been intensively studied, only a few methods for fitting regression models have been suggested, and only for a limited number of covariates. In this article, we present a method to fit the Cox regression model to doubly truncated data with multiple discrete and continuous covariates, and describe how to implement it using existing software. The approach is used to study the association between candidate single nucleotide polymorphisms and age of onset of Parkinson's disease.
Doubly truncated data arise when event times are observed only if they fall within subject-specific, possibly random, intervals. While non-parametric methods for survivor function estimation using doubly truncated data have been intensively studied, only a few methods for fitting regression models have been suggested, and only for a limited number of covariates. In this article, we present a method to fit the Cox regression model to doubly truncated data with multiple discrete and continuous covariates, and describe how to implement it using existing software. The approach is used to study the association between candidate single nucleotide polymorphisms and age of onset of Parkinson's disease.
Summary Doubly truncated data arise when event times are observed only if they fall within subject‐specific, possibly random, intervals. While non‐parametric methods for survivor function estimation using doubly truncated data have been intensively studied, only a few methods for fitting regression models have been suggested, and only for a limited number of covariates. In this article, we present a method to fit the Cox regression model to doubly truncated data with multiple discrete and continuous covariates, and describe how to implement it using existing software. The approach is used to study the association between candidate single nucleotide polymorphisms and age of onset of Parkinson's disease.
Doubly truncated data arise when event times are observed only if they fall within subject-specific, possibly random, intervals. While non-parametric methods for survivor function estimation using doubly truncated data have been intensively studied, only a few methods for fitting regression models have been suggested, and only for a limited number of covariates. In this paper, we present a method to fit the Cox regression model to doubly truncated data with multiple discrete and continuous covariates, and describe how to implement it using existing software. The approach is used to study the association between candidate single nucleotide polymorphisms and age of onset of Parkinson’s disease.
Author Betensky, Rebecca A.
Simon, David K.
Mandel, Micha
de Uña-Álvarez, Jacobo
AuthorAffiliation 2 Department of Statistics and OR and Center for Biomedical Research (CINBIO), University of Vigo, Vigo, Spain
3 Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
1 Department of Statistics, The Hebrew University of Jerusalem, Jerusalem, Israel
4 Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
AuthorAffiliation_xml – name: 1 Department of Statistics, The Hebrew University of Jerusalem, Jerusalem, Israel
– name: 4 Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
– name: 2 Department of Statistics and OR and Center for Biomedical Research (CINBIO), University of Vigo, Vigo, Spain
– name: 3 Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
Author_xml – sequence: 1
  givenname: Micha
  surname: Mandel
  fullname: Mandel, Micha
– sequence: 2
  givenname: Jacobo
  surname: de Uña-Álvarez
  fullname: de Uña-Álvarez, Jacobo
– sequence: 3
  givenname: David K.
  surname: Simon
  fullname: Simon, David K.
– sequence: 4
  givenname: Rebecca A.
  surname: Betensky
  fullname: Betensky, Rebecca A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28886206$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFrFDEYhoO02G314l0Z8CLC1CSTZJJLQbfVLrRUpKK3kGS_2WaZTWoyU91_b9ZtF-vBXELI8z28H-8h2gsxAEIvCD4m5byzPq6OCW1b8gRNCGekxoziPTTBGIu6YeT7ATrMeVmeimP6FB1QKaWgWEzQ2SzcQcpQfU7RGut7P6yrb-AXNwPMq2n8VX2BRYKcfQxVF1N1Gkfbr6vrNAZnNsypGcwztN-ZPsPz-_sIff14dj09ry-uPs2m7y9qx1pMaqtER4VjhCsQ3FghgXcdMcbSRgrLwQgsCXWdcd1cAsNdaw1WghkqLDDXHKGTrfd2tCuYOwhDMr2-TX5l0lpH4_Xjn-Bv9CLeaS5ZU1Yvgjf3ghR_jJAHvfLZQd-bAHHMmqim5Q1WcoO-_gddxjGFsp6mmKtGMo55od5uKZdizgm6XRiC9aYdvWlH_2mnwK_-jr9DH-ooANkCP30P6_-o9IfZ1eWD9OV2ZpmHmHYzJZ0qXtX8Bqt4plo
CitedBy_id crossref_primary_10_1016_j_csda_2019_106862
crossref_primary_10_1016_j_jaci_2023_06_015
crossref_primary_10_1371_journal_pone_0253413
crossref_primary_10_1080_02664763_2023_2178641
crossref_primary_10_1007_s11424_024_3288_8
crossref_primary_10_1002_sim_9828
crossref_primary_10_1007_s42952_020_00057_6
crossref_primary_10_1002_bimj_201800323
crossref_primary_10_1007_s10114_024_3381_x
crossref_primary_10_1111_biom_13451
crossref_primary_10_12677_AAM_2021_1012464
crossref_primary_10_1111_biom_13162
crossref_primary_10_3150_20_BEJ1236
crossref_primary_10_1007_s42952_021_00113_9
crossref_primary_10_1177_09622802211023955
crossref_primary_10_1080_02331888_2020_1772788
crossref_primary_10_1080_03610918_2023_2266158
Cites_doi 10.1017/CBO9780511802843
10.1080/01621459.1999.10474187
10.2307/2532891
10.1016/j.stamet.2015.11.002
10.1089/ars.2008.2241
10.1080/01621459.2012.746073
10.1093/hmg/ddm159
10.1080/01621459.1989.10478780
10.1016/j.csda.2014.03.017
10.1016/j.cell.2011.02.010
10.1007/s10985-013-9287-z
10.1093/biomet/64.2.225
10.1007/s10463-008-0192-2
10.1093/biomet/asp026
10.1198/jasa.2009.tm08614
10.1214/aos/1176346585
10.1007/s00180-012-0318-0
10.1186/1471-2350-12-69
10.1111/j.2517-6161.1976.tb01597.x
10.18637/jss.v037.i07
10.1093/biomet/asr072
10.1002/sim.3938
10.1111/j.1541-0420.2009.01287.x
10.2307/3316134
10.1016/j.spl.2008.09.026
10.1214/aos/1176346584
ContentType Journal Article
Copyright Copyright © 2018 International Biometric Society
2017, The International Biometric Society
2017, The International Biometric Society.
2018, The International Biometric Society
Copyright_xml – notice: Copyright © 2018 International Biometric Society
– notice: 2017, The International Biometric Society
– notice: 2017, The International Biometric Society.
– notice: 2018, The International Biometric Society
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
JQ2
7X8
5PM
DOI 10.1111/biom.12771
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Computer Science Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE



ProQuest Computer Science Collection
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
EndPage 487
ExternalDocumentID 10_1111_biom_12771
28886206
BIOM12771
45092889
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS094610
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
05W
0R~
10A
1OC
23N
2QV
33P
36B
3SF
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AAPXW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABFAN
ABHUG
ABJNI
ABLJU
ABMNT
ABPPZ
ABPVW
ABWRO
ABXSQ
ABXVV
ABYWD
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACPOU
ACPRK
ACSCC
ACTMH
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFGKR
AFPWT
AFVGU
AFVYC
AFZJQ
AGJLS
AGTJU
AHMBA
AIAGR
AIURR
AIWBW
AJAOE
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BCRHZ
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DXH
EAD
EAP
EBC
EBD
EBS
EDO
EJD
EMB
EMK
EMOBN
EST
ESTFP
ESX
F00
F01
F04
F5P
FD6
G-S
G.N
GODZA
GS5
H.T
H.X
HZI
HZ~
IX1
J0M
JAC
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OWPYF
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
ROX
RX1
RXW
SUPJJ
SV3
TN5
TUS
UB1
V8K
VQA
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
X6Y
XBAML
XG1
XSW
ZZTAW
~02
~IA
~KM
~WT
.GJ
.Y3
2AX
3-9
31~
3V.
7X7
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAHBH
AAUAY
ABBHK
ABJCF
ABTAH
ABUWG
ACBWZ
ACKIV
ADACV
ADODI
ADULT
AELPN
AEUPB
AFDVO
AFFTP
AFKRA
AIBGX
ALEEW
ALIPV
APXXL
ARAPS
ASPBG
AS~
AVWKF
AZFZN
AZQEC
BBNVY
BGLVJ
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
COF
DQDLB
DSRWC
DWQXO
ECEWR
FEDTE
FXEWX
FYUFA
GNUQQ
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
IHE
IPSME
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
K6V
K7-
L6V
LK8
M1P
M2P
M7P
M7S
NHB
OIG
OJZSN
P0-
P62
PROAC
PSQYO
PTHSS
Q2X
RNS
RWL
SA0
TAE
UAP
UKHRP
ZGI
ZXP
ZY4
AAZSN
CGR
CUY
CVF
ECM
EIF
KOP
NPM
AAYXX
ABEJV
CITATION
JQ2
7X8
5PM
ID FETCH-LOGICAL-c4701-b96f26c4159e65ab68e5ff1aab2386b5ea60812cfacfd8e40f7ba0964a26be4c3
IEDL.DBID DR2
ISSN 0006-341X
IngestDate Tue Sep 17 21:26:18 EDT 2024
Thu Oct 24 22:42:39 EDT 2024
Wed Nov 06 07:54:22 EST 2024
Tue Oct 29 03:15:30 EDT 2024
Wed Oct 16 00:50:06 EDT 2024
Sat Aug 24 01:08:40 EDT 2024
Wed Mar 06 03:17:52 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords U statistic
Biased data
Right truncation
Inverse weighting
Language English
License 2017, The International Biometric Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4701-b96f26c4159e65ab68e5ff1aab2386b5ea60812cfacfd8e40f7ba0964a26be4c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4270-9777
OpenAccessLink https://europepmc.org/articles/pmc5843502?pdf=render
PMID 28886206
PQID 2059384505
PQPubID 35366
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5843502
proquest_miscellaneous_1937530982
proquest_journals_2059384505
crossref_primary_10_1111_biom_12771
pubmed_primary_28886206
wiley_primary_10_1111_biom_12771_BIOM12771
jstor_primary_45092889
PublicationCentury 2000
PublicationDate June 2018
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: June 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Biometrics
PublicationTitleAlternate Biometrics
PublicationYear 2018
Publisher Wiley-Blackwell
Blackwell Publishing Ltd
Publisher_xml – name: Wiley-Blackwell
– name: Blackwell Publishing Ltd
References 1989; 84
2010; 37
2013; 28
2013; 108
1999; 27
2002; 8
1997
1996; 52
1977; 64
2016; 30
2011; 12
2016; 93
2012; 99
2010; 62
2014; 20
2007; 16
2009; 11
2010; 66
2009; 79
2009; 96
2010; 29
2017
2015
1999; 94
1976; 38
2009; 104
2011; 144
1985; 13
Shen (2024011406322594000_biom12771-bib-0020) 2017
Therneau (2024011406322594000_biom12771-bib-0024) 2015
Shen (2024011406322594000_biom12771-bib-0018) 2013; 28
Thomas (2024011406322594000_biom12771-bib-0025) 2007; 16
Clark (2024011406322594000_biom12771-bib-0004) 2009; 11
Huang (2024011406322594000_biom12771-bib-0007) 2012; 99
Alioum (2024011406322594000_biom12771-bib-0001) 1996; 52
Sherer (2024011406322594000_biom12771-bib-0022) 2002; 8
Turnbull (2024011406322594000_biom12771-bib-0027) 1976; 38
Kalbfleisch (2024011406322594000_biom12771-bib-0010) 1989; 84
Efron (2024011406322594000_biom12771-bib-0006) 1999; 94
Shen (2024011406322594000_biom12771-bib-0019) 2016; 30
Shen (2024011406322594000_biom12771-bib-0017) 2010; 62
Qin (2024011406322594000_biom12771-bib-0015) 2010; 66
Davison (2024011406322594000_biom12771-bib-0005) 1997
Iyengar (2024011406322594000_biom12771-bib-0009) 1999; 27
Austin (2024011406322594000_biom12771-bib-0002) 2014; 20
Vardi (2024011406322594000_biom12771-bib-0028) 1985; 13
Moreira (2024011406322594000_biom12771-bib-0012) 2010; 29
Moreira (2024011406322594000_biom12771-bib-0014) 2016; 93
Kim (2024011406322594000_biom12771-bib-0011) 2013; 108
Moreira (2024011406322594000_biom12771-bib-0013) 2010; 37
Shen (2024011406322594000_biom12771-bib-0016) 2009; 79
Shen (2024011406322594000_biom12771-bib-0021) 2009; 104
Tsai (2024011406322594000_biom12771-bib-0026) 2009; 96
Shin (2024011406322594000_biom12771-bib-0023) 2011; 144
Woodroofe (2024011406322594000_biom12771-bib-0029) 1985; 13
Hyde (2024011406322594000_biom12771-bib-0008) 1977; 64
Clark (2024011406322594000_biom12771-bib-0003) 2011; 12
References_xml – year: 1997
  publication-title: Bootstrap Methods and Their Application
– volume: 13
  start-page: 178
  year: 1985
  end-page: 203
  article-title: Empirical distributions in selection bias models
  publication-title: The Annals of Statistics
– volume: 11
  start-page: 509
  year: 2009
  end-page: 528
  article-title: Transcribe to survive: Transcriptional control of antioxidant defense programs for neuroprotection in Parkinson's disease
  publication-title: Antioxid Redox Signal
– volume: 30
  start-page: 15
  year: 2016
  end-page: 30
  article-title: Analysis of transformation models with doubly truncated data
  publication-title: Statistical Methodology
– volume: 84
  start-page: 360
  year: 1989
  end-page: 372
  article-title: Inference based on retrospective ascertainment: An analysis of the data on transfusion‐related AIDS
  publication-title: Journal of the American Statistical Association
– volume: 29
  start-page: 3147
  year: 2010
  end-page: 3159
  article-title: A semiparametric estimator of survival for doubly truncated data
  publication-title: Statistics in Medicine
– volume: 16
  year: 2007
  article-title: Parkinson's disease
  publication-title: Human Molecular Genetics
– volume: 144
  start-page: 689
  year: 2011
  end-page: 702
  article-title: PARIS (ZNF746) repression of PGC‐1a contributes to neurodegeneration inParkinson's disease
  publication-title: Cell
– volume: 62
  start-page: 835
  year: 2010
  end-page: 853
  article-title: Nonparametric analysis of doubly truncated data
  publication-title: Annals of the Institute of Statistical Mathematics
– year: 2017
  article-title: Pseudo maximum likelihood estimation for the Cox model with doubly truncated data
  publication-title: Statistical Papers
– volume: 99
  start-page: 199
  year: 2012
  end-page: 210
  article-title: A maximum pseudo‐profile likelihood estimator for the Cox model with length‐biased sampling
  publication-title: Biometrika
– volume: 8
  start-page: 192
  year: 2002
  end-page: 197
  article-title: Environment, mitochondria, and Parkinson's disease
  publication-title: The Neuroscientist
– volume: 104
  start-page: 1192
  year: 2009
  end-page: 1202
  article-title: Analyzing length‐biased data with semiparametric transformation and accelerated failure time models
  publication-title: Journal of the American Statistical Association
– volume: 20
  start-page: 335
  year: 2014
  end-page: 354
  article-title: Computationally simple estimation and improved efficiency for special cases of double truncation
  publication-title: Lifetime Data Analysis
– volume: 94
  start-page: 824
  year: 1999
  end-page: 834
  article-title: Nonparametric methods for doubly truncated data
  publication-title: Journal of the American Statistical Association
– volume: 28
  start-page: 581
  year: 2013
  end-page: 596
  article-title: Regression analysis of interval censored and doubly truncated data with linear transformation models
  publication-title: Computational Statistics
– volume: 79
  start-page: 457
  year: 2009
  end-page: 465
  article-title: Hazards regression for length‐biased and right‐censored data
  publication-title: Statistics & Probability Letters
– volume: 108
  start-page: 217
  year: 2013
  end-page: 227
  article-title: A Unified approach to semiparametric transformation models under general biased sampling schemes
  publication-title: Journal of the American Statistical Association
– volume: 52
  start-page: 512
  year: 1996
  end-page: 524
  article-title: A proportional hazards model for arbitrarily censored and truncated data
  publication-title: Biometrics
– volume: 37
  start-page: 1
  year: 2010
  end-page: 20
  article-title: DTDA: An R package to analyze randomly truncated data
  publication-title: Journal of Statistical Software
– volume: 38
  start-page: 290
  year: 1976
  end-page: 295
  article-title: The empirical distribution function with arbitrarily grouped, censored and truncated data
  publication-title: Journal of the Royal Statistical Society
– volume: 96
  start-page: 601
  year: 2009
  end-page: 615
  article-title: Pseudo‐partial likelihood for proportional hazards models with biased‐sampling data
  publication-title: Biometrika
– volume: 13
  start-page: 163
  year: 1985
  end-page: 177
  article-title: Estimating a distribution function with truncated data
  publication-title: The Annals of Statistics
– volume: 27
  start-page: 833
  year: 1999
  end-page: 841
  article-title: Fisher information in weighted distributions
  publication-title: Canadian Journal of Statistics
– volume: 66
  start-page: 382
  year: 2010
  end-page: 392
  article-title: Statistical Methods for Analyzing Right‐Censored Length‐Biased Data under Cox Model
  publication-title: Biometrics
– volume: 64
  start-page: 225
  year: 1977
  end-page: 230
  article-title: Testing survival under right censoring and left truncation
  publication-title: Biometrika
– volume: 12
  year: 2011
  article-title: Association of PGC‐1alphapolymorphisms with age of onset and risk of Parkinson's disease
  publication-title: BMC Medical Genetics
– volume: 93
  start-page: 294
  year: 2016
  end-page: 307
  article-title: Nonparametric regression with doubly truncated data
  publication-title: Computational Statistics & Data Analysis
– year: 2015
– volume-title: Bootstrap Methods and Their Application
  year: 1997
  ident: 2024011406322594000_biom12771-bib-0005
  doi: 10.1017/CBO9780511802843
  contributor:
    fullname: Davison
– volume: 94
  start-page: 824
  year: 1999
  ident: 2024011406322594000_biom12771-bib-0006
  article-title: Nonparametric methods for doubly truncated data
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1999.10474187
  contributor:
    fullname: Efron
– volume: 52
  start-page: 512
  year: 1996
  ident: 2024011406322594000_biom12771-bib-0001
  article-title: A proportional hazards model for arbitrarily censored and truncated data
  publication-title: Biometrics
  doi: 10.2307/2532891
  contributor:
    fullname: Alioum
– year: 2017
  ident: 2024011406322594000_biom12771-bib-0020
  article-title: Pseudo maximum likelihood estimation for the Cox model with doubly truncated data
  publication-title: Statistical Papers
  contributor:
    fullname: Shen
– volume: 30
  start-page: 15
  year: 2016
  ident: 2024011406322594000_biom12771-bib-0019
  article-title: Analysis of transformation models with doubly truncated data
  publication-title: Statistical Methodology
  doi: 10.1016/j.stamet.2015.11.002
  contributor:
    fullname: Shen
– volume: 11
  start-page: 509
  year: 2009
  ident: 2024011406322594000_biom12771-bib-0004
  article-title: Transcribe to survive: Transcriptional control of antioxidant defense programs for neuroprotection in Parkinson's disease
  publication-title: Antioxid Redox Signal
  doi: 10.1089/ars.2008.2241
  contributor:
    fullname: Clark
– volume: 108
  start-page: 217
  year: 2013
  ident: 2024011406322594000_biom12771-bib-0011
  article-title: A Unified approach to semiparametric transformation models under general biased sampling schemes
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2012.746073
  contributor:
    fullname: Kim
– volume: 16
  year: 2007
  ident: 2024011406322594000_biom12771-bib-0025
  article-title: Parkinson's disease
  publication-title: Human Molecular Genetics
  doi: 10.1093/hmg/ddm159
  contributor:
    fullname: Thomas
– volume: 84
  start-page: 360
  year: 1989
  ident: 2024011406322594000_biom12771-bib-0010
  article-title: Inference based on retrospective ascertainment: An analysis of the data on transfusion-related AIDS
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1989.10478780
  contributor:
    fullname: Kalbfleisch
– volume: 8
  start-page: 192
  year: 2002
  ident: 2024011406322594000_biom12771-bib-0022
  article-title: Environment, mitochondria, and Parkinson's disease
  publication-title: The Neuroscientist
  contributor:
    fullname: Sherer
– volume: 93
  start-page: 294
  year: 2016
  ident: 2024011406322594000_biom12771-bib-0014
  article-title: Nonparametric regression with doubly truncated data
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2014.03.017
  contributor:
    fullname: Moreira
– volume: 144
  start-page: 689
  year: 2011
  ident: 2024011406322594000_biom12771-bib-0023
  article-title: PARIS (ZNF746) repression of PGC-1a contributes to neurodegeneration inParkinson's disease
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.010
  contributor:
    fullname: Shin
– volume: 20
  start-page: 335
  year: 2014
  ident: 2024011406322594000_biom12771-bib-0002
  article-title: Computationally simple estimation and improved efficiency for special cases of double truncation
  publication-title: Lifetime Data Analysis
  doi: 10.1007/s10985-013-9287-z
  contributor:
    fullname: Austin
– volume: 64
  start-page: 225
  year: 1977
  ident: 2024011406322594000_biom12771-bib-0008
  article-title: Testing survival under right censoring and left truncation
  publication-title: Biometrika
  doi: 10.1093/biomet/64.2.225
  contributor:
    fullname: Hyde
– volume: 62
  start-page: 835
  year: 2010
  ident: 2024011406322594000_biom12771-bib-0017
  article-title: Nonparametric analysis of doubly truncated data
  publication-title: Annals of the Institute of Statistical Mathematics
  doi: 10.1007/s10463-008-0192-2
  contributor:
    fullname: Shen
– volume: 96
  start-page: 601
  year: 2009
  ident: 2024011406322594000_biom12771-bib-0026
  article-title: Pseudo-partial likelihood for proportional hazards models with biased-sampling data
  publication-title: Biometrika
  doi: 10.1093/biomet/asp026
  contributor:
    fullname: Tsai
– volume: 104
  start-page: 1192
  year: 2009
  ident: 2024011406322594000_biom12771-bib-0021
  article-title: Analyzing length-biased data with semiparametric transformation and accelerated failure time models
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/jasa.2009.tm08614
  contributor:
    fullname: Shen
– volume: 13
  start-page: 178
  year: 1985
  ident: 2024011406322594000_biom12771-bib-0028
  article-title: Empirical distributions in selection bias models
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1176346585
  contributor:
    fullname: Vardi
– volume: 28
  start-page: 581
  year: 2013
  ident: 2024011406322594000_biom12771-bib-0018
  article-title: Regression analysis of interval censored and doubly truncated data with linear transformation models
  publication-title: Computational Statistics
  doi: 10.1007/s00180-012-0318-0
  contributor:
    fullname: Shen
– volume: 12
  year: 2011
  ident: 2024011406322594000_biom12771-bib-0003
  article-title: Association of PGC-1alphapolymorphisms with age of onset and risk of Parkinson's disease
  publication-title: BMC Medical Genetics
  doi: 10.1186/1471-2350-12-69
  contributor:
    fullname: Clark
– volume: 38
  start-page: 290
  year: 1976
  ident: 2024011406322594000_biom12771-bib-0027
  article-title: The empirical distribution function with arbitrarily grouped, censored and truncated data
  publication-title: Journal of the Royal Statistical Society
  doi: 10.1111/j.2517-6161.1976.tb01597.x
  contributor:
    fullname: Turnbull
– year: 2015
  ident: 2024011406322594000_biom12771-bib-0024
  publication-title: A Package for Survival Analysis in S. version 2.38
  contributor:
    fullname: Therneau
– volume: 37
  start-page: 1
  year: 2010
  ident: 2024011406322594000_biom12771-bib-0013
  article-title: DTDA: An R package to analyze randomly truncated data
  publication-title: Journal of Statistical Software
  doi: 10.18637/jss.v037.i07
  contributor:
    fullname: Moreira
– volume: 99
  start-page: 199
  year: 2012
  ident: 2024011406322594000_biom12771-bib-0007
  article-title: A maximum pseudo-profile likelihood estimator for the Cox model with length-biased sampling
  publication-title: Biometrika
  doi: 10.1093/biomet/asr072
  contributor:
    fullname: Huang
– volume: 29
  start-page: 3147
  year: 2010
  ident: 2024011406322594000_biom12771-bib-0012
  article-title: A semiparametric estimator of survival for doubly truncated data
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.3938
  contributor:
    fullname: Moreira
– volume: 66
  start-page: 382
  year: 2010
  ident: 2024011406322594000_biom12771-bib-0015
  article-title: Statistical Methods for Analyzing Right-Censored Length-Biased Data under Cox Model
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2009.01287.x
  contributor:
    fullname: Qin
– volume: 27
  start-page: 833
  year: 1999
  ident: 2024011406322594000_biom12771-bib-0009
  article-title: Fisher information in weighted distributions
  publication-title: Canadian Journal of Statistics
  doi: 10.2307/3316134
  contributor:
    fullname: Iyengar
– volume: 79
  start-page: 457
  year: 2009
  ident: 2024011406322594000_biom12771-bib-0016
  article-title: Hazards regression for length-biased and right-censored data
  publication-title: Statistics & Probability Letters
  doi: 10.1016/j.spl.2008.09.026
  contributor:
    fullname: Shen
– volume: 13
  start-page: 163
  year: 1985
  ident: 2024011406322594000_biom12771-bib-0029
  article-title: Estimating a distribution function with truncated data
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1176346584
  contributor:
    fullname: Woodroofe
SSID ssj0009502
Score 2.3873081
Snippet Doubly truncated data arise when event times are observed only if they fall within subject-specific, possibly random, intervals. While non-parametric methods...
Summary Doubly truncated data arise when event times are observed only if they fall within subject‐specific, possibly random, intervals. While non‐parametric...
Summary Doubly truncated data arise when event times are observed only if they fall within subject-specific, possibly random, intervals. While non-parametric...
Doubly truncated data arise when event times are observed only if they fall within subject‐specific, possibly random, intervals. While non‐parametric methods...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 481
SubjectTerms Age of Onset
Biased data
BIOMETRIC METHODOLOGY: DISCUSSION PAPER
Biometry - methods
Humans
Inverse weighting
Movement disorders
Neurodegenerative diseases
Parkinson Disease - genetics
Parkinson's disease
Polymorphism, Single Nucleotide
Probability
Proportional Hazards Models
Regression Analysis
Regression models
Right truncation
Single-nucleotide polymorphism
Software
Statistical analysis
U statistic
Title Inverse Probability Weighted Cox Regression for Doubly Truncated Data
URI https://www.jstor.org/stable/45092889
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.12771
https://www.ncbi.nlm.nih.gov/pubmed/28886206
https://www.proquest.com/docview/2059384505
https://search.proquest.com/docview/1937530982
https://pubmed.ncbi.nlm.nih.gov/PMC5843502
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ha9QwFH-MgTA_OD2dVueI6CehR5pL0xb2Zc6NTTgFcXBfpCTti4rSG9c79PzrfUmu9W4bA_1WyGsgee81v6S__B7Aq8IB-bzCmJu6jmVtbJxLzGJe6KqggNHGV28Yv1dnF_LdJJ1swWF3FyboQ_QHbi4z_PfaJbg27VqSu-vpw0Rk_gJ5Msocn-vtR7GmuMuDVLgjd8lkstImdTSev69urEaBkHgT1LzOmFxHsn4pOt2Fz90gAgPl-3AxN8Pq9xV9x_8d5X24t8Ko7CgE1QPYwmYAd0LVyuUA7o57qdd2ADsOrga154dw4mQ7Zi0yV6cmKIAv2U9_-oo1O57-YjP8Epi3DSO4zOrpwvxYsvls4cRpycYxVh_BxenJp-OzeFWoIa5kxpPYFMoKVREWKFCl2qgcU2sTrQ0BAmVS1IqQh6isrmydo-Q2M5r2TlILZVBWoz3YbqYNPgGGHEVqCXQmycgp3xfCZLVJa6HTjFuJEbzsHFZeBj2OstvHuLkq_VxFsOd92ZtIwkUUk0UE-51zy1WytqVwZQ1zMkkjeNE3U5q5fye6wemiLQnn0saOF7mI4HGIhb5z6pj2hVxFkG1ESW_gJLw3W5pvX72UN8G_EcVpBK99ENwypPLN-Yexf3r6L8bPYIcgXh7IbfuwTf7E5wSj5ubAp8sfjd4ZkA
link.rule.ids 230,315,783,787,888,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6hIcR44EdhEBhgBE9IqRzXcZJHGJs6WIeENqlvkZ3YgJjSqWkF5a_nzk5DCwgJ3iL5Ysm-u_iz8_k7gBcFAfm8sjE3dR3L2rg4lzaLeaGrAgNGG1-9YXKqxufy7TSddtwcugsT9CH6AzfKDP-9pgSnA-mNLKf76cNEZHSD_Crm-4gqN7z5IDY0d3kQCyd6l0ymnTopEXl-vru1HgVK4p_A5u-cyU0s6xejo1uh4mrrNQyJg_JluFyYYfX9F4XH_x7nbbjZwVT2KsTVHbhimwFcC4UrVwO4MenVXtsB7BJiDYLPd-GQlDvmrWVUqiaIgK_YV38Aa2t2MPvG5vZjIN82DBEzq2dLc7Fii_mS9GnRhkir9-D86PDsYBx3tRriSmY8iU2hnFAVwoHCqlQbldvUuURrg5hAmdRqheBDVE5Xrs6t5C4zGrdPUgtlrKxGe7DTzBr7AJjlVqQOcWeSjEj8vhAmq01aC51m3EkbwfO1x8rLIMlRrrcyNFeln6sI9rwzexOJ0AjDsohgf-3dssvXthRU2TBHkzSCZ30zZhr9PtGNnS3bEqEu7u14kYsI7odg6DvHjnFryFUE2VaY9Aak4r3d0nz-5NW8EQGOMFAjeOmj4C9DKl8fv5_4p4f_YvwUro_PJiflyfHpu0ewi4gvD1y3fdhB39rHiKoW5onPnR__rR2o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fi9QwEMeH40Q5H_yxelo9taJPQpc0m6Yt-KLnLXfqniIe7IuUpEnuDqV77A90_eudSbZ1V0XQt0KmgTQzzSft5DsAT0sC-aK2CdPGJMJolxTC5gkrVV2iwyjtqzeMjuXhiXg9zsZb8Lw9CxP0IboPbhQZ_n1NAX5h3FqQ0_H0fspzOkB-SUhEX0KiD3xNcpcFrXDK7hLpeCVOSnk8P-_dWI5CRuKfWPP3lMl1lPVr0fA6fGpHEVJQPvcXc92vv_8i8Pi_w7wB11aQGr8IXnUTtmzTg8uhbOWyB1dHndbrrAc7xKtB7vkWHJBux3RmYypUEyTAl_FX__nVmnh_8i2e2tOQetvEyMuxmSz0l2U8ny5InRZtKGX1NpwMDz7uHyarSg1JLXKWJrqUjssaYaC0MlNaFjZzLlVKIxFInVklET147VTtTGEFc7lWuHkSikttRT3Yhe1m0ti7EFtmeeaQOtN0QNL3Jde50ZnhKsuZEzaCJ-2EVRdBkKNqNzL0rCr_rCLY9XPZmQgEI3TKMoK9dnKrVbTOKk51DQs0ySJ43DVjnNHPE9XYyWJWIejizo6VBY_gTvCFrnPsGDeGTEaQb3hJZ0Aa3pstzfmZ1_JG_hugn0bwzDvBX4ZUvTx6N_JX9_7F-BFcef9qWL09On5zH3YQ94qQ6LYH2zi19gEi1Vw_9JHzA5kCHFc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inverse+probability+weighted+Cox+regression+for+doubly+truncated+data&rft.jtitle=Biometrics&rft.au=Mandel%2C+Micha&rft.au=de+U%C3%B1a-%C3%81lvarez%2C+Jacobo&rft.au=Simon%2C+David+K&rft.au=Betensky%2C+Rebecca+A&rft.date=2018-06-01&rft.eissn=1541-0420&rft.volume=74&rft.issue=2&rft.spage=481&rft_id=info:doi/10.1111%2Fbiom.12771&rft_id=info%3Apmid%2F28886206&rft.externalDocID=28886206
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon