Mitochondrial dysfunction in heart diseases: Potential therapeutic effects of Panax ginseng

Heart diseases have a high incidence and mortality rate, and seriously affect people’s quality of life. Mitochondria provide energy for the heart to function properly. The process of various heart diseases is closely related to mitochondrial dysfunction. Panax ginseng ( P. ginseng ), as a traditiona...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in pharmacology Vol. 14; p. 1218803
Main Authors Cao, Xinxin, Yao, Fan, Zhang, Bin, Sun, Xiaobo
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 20.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Heart diseases have a high incidence and mortality rate, and seriously affect people’s quality of life. Mitochondria provide energy for the heart to function properly. The process of various heart diseases is closely related to mitochondrial dysfunction. Panax ginseng ( P. ginseng ), as a traditional Chinese medicine, is widely used to treat various cardiovascular diseases. Many studies have confirmed that P. ginseng and ginsenosides can regulate and improve mitochondrial dysfunction. Therefore, the role of mitochondria in various heart diseases and the protective effect of P. ginseng on heart diseases by regulating mitochondrial function were reviewed in this paper, aiming to gain new understanding of the mechanisms, and promote the clinical application of P. ginseng .
AbstractList Heart diseases have a high incidence and mortality rate, and seriously affect people’s quality of life. Mitochondria provide energy for the heart to function properly. The process of various heart diseases is closely related to mitochondrial dysfunction. Panax ginseng ( P. ginseng ), as a traditional Chinese medicine, is widely used to treat various cardiovascular diseases. Many studies have confirmed that P. ginseng and ginsenosides can regulate and improve mitochondrial dysfunction. Therefore, the role of mitochondria in various heart diseases and the protective effect of P. ginseng on heart diseases by regulating mitochondrial function were reviewed in this paper, aiming to gain new understanding of the mechanisms, and promote the clinical application of P. ginseng .
Heart diseases have a high incidence and mortality rate, and seriously affect people’s quality of life. Mitochondria provide energy for the heart to function properly. The process of various heart diseases is closely related to mitochondrial dysfunction. Panax ginseng (P. ginseng), as a traditional Chinese medicine, is widely used to treat various cardiovascular diseases. Many studies have confirmed that P. ginseng and ginsenosides can regulate and improve mitochondrial dysfunction. Therefore, the role of mitochondria in various heart diseases and the protective effect of P. ginseng on heart diseases by regulating mitochondrial function were reviewed in this paper, aiming to gain new understanding of the mechanisms, and promote the clinical application of P. ginseng.
Heart diseases have a high incidence and mortality rate, and seriously affect people's quality of life. Mitochondria provide energy for the heart to function properly. The process of various heart diseases is closely related to mitochondrial dysfunction. ( ), as a traditional Chinese medicine, is widely used to treat various cardiovascular diseases. Many studies have confirmed that and ginsenosides can regulate and improve mitochondrial dysfunction. Therefore, the role of mitochondria in various heart diseases and the protective effect of on heart diseases by regulating mitochondrial function were reviewed in this paper, aiming to gain new understanding of the mechanisms, and promote the clinical application of .
Heart diseases have a high incidence and mortality rate, and seriously affect people's quality of life. Mitochondria provide energy for the heart to function properly. The process of various heart diseases is closely related to mitochondrial dysfunction. Panax ginseng (P. ginseng), as a traditional Chinese medicine, is widely used to treat various cardiovascular diseases. Many studies have confirmed that P. ginseng and ginsenosides can regulate and improve mitochondrial dysfunction. Therefore, the role of mitochondria in various heart diseases and the protective effect of P. ginseng on heart diseases by regulating mitochondrial function were reviewed in this paper, aiming to gain new understanding of the mechanisms, and promote the clinical application of P. ginseng.Heart diseases have a high incidence and mortality rate, and seriously affect people's quality of life. Mitochondria provide energy for the heart to function properly. The process of various heart diseases is closely related to mitochondrial dysfunction. Panax ginseng (P. ginseng), as a traditional Chinese medicine, is widely used to treat various cardiovascular diseases. Many studies have confirmed that P. ginseng and ginsenosides can regulate and improve mitochondrial dysfunction. Therefore, the role of mitochondria in various heart diseases and the protective effect of P. ginseng on heart diseases by regulating mitochondrial function were reviewed in this paper, aiming to gain new understanding of the mechanisms, and promote the clinical application of P. ginseng.
Author Yao, Fan
Zhang, Bin
Sun, Xiaobo
Cao, Xinxin
AuthorAffiliation 1 Institute of Medicinal Plant Development , Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing , China
3 Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine , Beijing , China
4 Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease , State Administration of Traditional Chinese Medicine , Beijing , China
2 Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine , Ministry of Education , Beijing , China
AuthorAffiliation_xml – name: 4 Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease , State Administration of Traditional Chinese Medicine , Beijing , China
– name: 1 Institute of Medicinal Plant Development , Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing , China
– name: 3 Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine , Beijing , China
– name: 2 Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine , Ministry of Education , Beijing , China
Author_xml – sequence: 1
  givenname: Xinxin
  surname: Cao
  fullname: Cao, Xinxin
– sequence: 2
  givenname: Fan
  surname: Yao
  fullname: Yao, Fan
– sequence: 3
  givenname: Bin
  surname: Zhang
  fullname: Zhang, Bin
– sequence: 4
  givenname: Xiaobo
  surname: Sun
  fullname: Sun, Xiaobo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37547332$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAUtFARLaV_gAPKkcsu_kgchwtCFS2ViugBThwsfzxvXGXtxXYQ_fc43aVqOeCLLXtmnue9eYmOQgyA0GuC14yJ4Z3bjSqtKaZsTSgRArNn6IRwzlaDIPTo0fkYneV8i-tiw8B4-wIds75re8boCfrxxZdoxhhs8mpq7F12czDFx9D40IygUmmsz6Ay5PfNTSwQygIsIyS1g7l404BzYEpuomtuVFC_m40PGcLmFXru1JTh7LCfou8Xn76df15df728Ov94vTItH8rKQce4oYxqzFthrOuZhs6AdV0HrR4EYMcd17pztO-JG7QYcPVlhFWcO8VO0dVe10Z1K3fJb1W6k1F5eX8R00ZWG95MIK2mCrhivSa45aIfKBcWazMwoR2wvmp92GvtZr0Fa6rdpKYnok9fgh_lJv6SZOkuZ6QqvD0opPhzhlzk1mcD06QCxDlLKmrrW04or9A3j4s9VPk7ngqge4BJMecE7gFCsFxiIO9jIJcYyEMMKkn8QzK-qGWk9cN--h_1D5hyuwY
CitedBy_id crossref_primary_10_3389_fphar_2024_1405545
crossref_primary_10_1007_s41348_024_01010_z
crossref_primary_10_1016_j_phrs_2024_107164
crossref_primary_10_1038_s41598_023_45858_x
crossref_primary_10_1016_j_phymed_2025_156587
Cites_doi 10.1016/j.biopha.2018.09.002
10.2147/JIR.S348866
10.3390/molecules171112746
10.1091/mbc.E12-10-0721
10.1080/07853890.2017.1417631
10.3892/mmr.2015.3336
10.1016/j.jgr.2018.12.004
10.1126/scisignal.aaw3159
10.1038/cddis.2017.43
10.1007/s00395-020-0797-z
10.1083/jcb.200704110
10.1038/srep44579
10.1016/j.bbadis.2017.07.017
10.1161/CIRCRESAHA.121.318241
10.5483/bmbrep.2008.41.1.011
10.1093/emboj/21.7.1616
10.1016/j.molcel.2014.02.034
10.1016/j.cell.2010.06.007
10.3109/13880209.2011.554845
10.1152/ajpheart.2001.280.5.H2313
10.1007/bf02828182
10.1016/j.redox.2017.01.013
10.1016/j.yjmcc.2014.09.015
10.2174/156652408783769571
10.1016/j.freeradbiomed.2020.06.039
10.1159/000484578
10.1016/j.jacc.2019.10.009
10.1002/smll.201901787
10.3390/cells10092463
10.1016/s0092-8674(00)81476-2
10.1038/s41467-019-11636-5
10.15252/emmm.201708237
10.1007/s00109-015-1256-4
10.1155/2019/9825061
10.1042/bj3030461
10.1016/j.jgr.2016.12.005
10.1002/1873-3468.12964
10.1111/jcmm.15384
10.1016/j.phrs.2021.105843
10.13412/j.cnki.zyyl.2014.01.009
10.1113/JP271301
10.1691/ph.2019.8858
10.3390/cells9010150
10.1155/2013/454389
10.3389/fphar.2022.806216
10.3390/nu10030350
10.3389/fendo.2022.907757
10.21037/atm.2017.06.17
10.1016/S0968-0004(00)01740-0
10.3390/ijms161025234
10.3390/cells10061317
10.1155/2017/8214541
10.1111/bph.12516
10.1038/s41586-019-1296-y
10.2147/JIR.S310633
10.19403/.cnki.1671-1521.2020.05.001
10.1073/pnas.0837428100
10.1111/jdi.12250
10.5142/jgr.2013.37.283
10.1038/sj.cdd.4400781
10.1186/s12974-021-02334-5
10.1016/j.biopha.2020.109913
10.1161/CIRCRESAHA.118.313568
10.1161/CIRCHEARTFAILURE.110.957969
10.1016/j.bbamcr.2010.11.023
10.13241/j.cnki.pmb.2020.01.004
10.1002/glia.24235
10.1155/2016/6967853
10.3390/ijms21061905
10.2174/0929867324666170616101741
10.1083/jcb.200605138
10.1007/s11655-015-2433-6
10.1016/j.lfs.2011.02.011
10.1038/74994
10.1007/s10495-010-0526-4
10.1016/j.redox.2020.101674
10.1038/nrm3028
10.3390/molecules23040759
10.1159/000491655
10.1038/embor.2009.256
10.1146/annurev-physiol-021909-135929
10.1126/science.aab4138
10.1111/jcmm.12739
10.1155/2019/6046405
10.1038/s41598-017-00853-x
10.1038/cdd.2012.81
10.1016/j.ejphar.2017.08.023
10.3389/fphar.2020.00130
10.1007/s11897-017-0347-7
10.1371/journal.pone.0064229
10.1016/j.jep.2022.115715
10.1074/jbc.M114.619072
10.1155/2011/767930
10.1016/j.cardiores.2005.10.019
10.1016/j.biopha.2018.10.081
10.1073/pnas.1002178107
10.1016/j.jep.2011.03.015
10.1111/j.1365-2362.2010.02318.x
10.1074/jbc.C700083200
10.3390/ijms23063025
10.1074/jbc.M702824200
10.1038/nature10234
10.1016/j.mito.2015.11.003
10.1016/j.freeradbiomed.2015.05.027
10.1016/j.tcb.2007.07.009
10.1038/s41401-020-00518-y
10.3390/cells10030612
10.1002/jcb.29150
10.1073/pnas.0706441104
10.1016/j.fct.2010.03.018
10.1073/pnas.0911187107
10.1016/S0092-8674(03)00116-8
10.1155/2014/149195
10.1038/s41598-019-44922-9
10.3892/mmr.2019.10093
10.1016/j.ceca.2016.04.005
10.1016/S0005-2728(02)00278-5
10.1152/physrev.00030.2008
10.3389/fphar.2020.532041
10.1371/journal.pone.0144733
10.1038/35036035
10.3389/fphys.2018.00078
10.1093/cvr/cvab324
10.1016/j.pharmthera.2014.01.003
10.3390/ijms222413384
10.1038/nature12043
10.1074/jbc.M607279200
10.1101/gad.1126903
10.1371/journal.pone.0103628
10.3390/ijms20174279
10.1371/journal.pbio.1000298
10.1016/j.cellsig.2012.01.008
10.1097/FJC.0b013e31828f8d45
10.3390/cells10082103
10.1016/j.phymed.2010.06.012
10.1097/FJC.0000000000000752
10.1038/ncb1007-1102
10.1101/cshperspect.a011072
10.1139/cjpp-2014-0164
10.1056/NEJMra071667
10.3390/molecules28072928
10.1007/BF02896771
10.3969/j.issn.1672-3619.2021.03.002
10.5142/jgr.2012.36.2.119
10.1039/c5ra02432c
10.1055/s-1999-14034
10.3892/mmr.2018.9104
10.1016/j.mad.2020.111380
10.1016/j.semcdb.2019.05.029
10.1155/2013/817826
10.1016/j.jacc.2014.06.1151
10.3389/fcell.2019.00172
10.1021/acs.chemrev.5b00407
10.1631/jzus.B1400204
10.3390/ijms18071364
10.1074/jbc.M801680200
10.3390/biomedicines9121793
10.1111/1750-3841.15505
10.1126/science.1099320
10.1021/acs.jafc.9b05706
10.1111/obr.13164
10.1038/nrcardio.2017.35
10.1038/s41569-020-0403-y
10.1016/j.molcel.2005.02.003
10.1016/j.bbadis.2016.11.010
10.15252/embj.201593102
10.1007/s11010-012-1265-3
10.1007/s12272-019-01188-z
10.1016/j.bbabio.2010.02.016
10.1016/j.cell.2018.11.025
10.14348/molcells.2018.2277
10.1016/j.biopha.2019.109487
10.3321/j.issn:1001-5302.2009.03.020
10.1371/journal.pone.0070956
10.1016/j.yjmcc.2013.12.032
10.1172/JCI120849
10.1016/s0962-8924(98)01273-2
10.1042/0264-6021:3570593
10.1152/ajpheart.1994.267.2.h742
10.1016/j.cmet.2014.12.001
10.1016/j.lfs.2021.119716
10.1016/j.jgr.2020.02.004
10.1016/j.bcp.2008.11.009
10.1016/j.ddmec.2010.07.002
10.1538/expanim.16-0121
10.1054/ceca.2000.0121
10.1152/ajpheart.00368.2011
10.1016/j.semcancer.2017.04.008
10.1038/sj.emboj.7601963
10.1016/j.hlc.2014.02.009
10.4196/kjpp.2013.17.4.283
10.1152/ajpcell.00139.2004
10.1007/s00125-003-1311-5
10.1016/j.jgr.2015.12.001
10.2147/VHRM.S11681
10.1016/j.freeradbiomed.2018.09.019
10.1016/j.phymed.2021.153717
10.1242/jcs.185165
10.3389/fphys.2016.00479
10.1007/s11033-010-0558-4
10.1016/j.jep.2020.112792
10.1016/j.febslet.2010.02.022
10.1016/j.jgr.2014.12.001
10.1007/s10557-008-6129-4
10.3389/fcell.2022.849962
10.1155/2016/2483163
10.1039/c9ra05037j
10.1155/2019/3714508
10.1007/s11481-020-09952-5
10.1016/j.bbadis.2020.165768
ContentType Journal Article
Copyright Copyright © 2023 Cao, Yao, Zhang and Sun.
Copyright © 2023 Cao, Yao, Zhang and Sun. 2023 Cao, Yao, Zhang and Sun
Copyright_xml – notice: Copyright © 2023 Cao, Yao, Zhang and Sun.
– notice: Copyright © 2023 Cao, Yao, Zhang and Sun. 2023 Cao, Yao, Zhang and Sun
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fphar.2023.1218803
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
DocumentTitleAlternate Cao et al
EISSN 1663-9812
ExternalDocumentID oai_doaj_org_article_db2ae6a37b1046879268d0bc938bfe37
PMC10399631
37547332
10_3389_fphar_2023_1218803
Genre Journal Article
Review
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
P2P
PGMZT
RNS
RPM
IAO
IEA
IHR
IHW
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c469t-fe536c232b0648cdf73be5cedf55e4b98e0f6f6bb5f2771f9b890812c8da66fa3
IEDL.DBID M48
ISSN 1663-9812
IngestDate Wed Aug 27 01:14:03 EDT 2025
Thu Aug 21 18:42:06 EDT 2025
Fri Jul 11 05:33:05 EDT 2025
Thu Jan 02 22:51:45 EST 2025
Tue Jul 01 02:53:10 EDT 2025
Thu Apr 24 22:50:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords ginsenosides
mechanism
Panax ginseng
heart disease
mitochondria
Language English
License Copyright © 2023 Cao, Yao, Zhang and Sun.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c469t-fe536c232b0648cdf73be5cedf55e4b98e0f6f6bb5f2771f9b890812c8da66fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Reviewed by: Frederic Boal, Metabolic and Cardiovascular Research Institute, France
Feifei Guo, China Academy of Chinese Medical Sciences, China
Edited by: Guoliang Meng, Nantong University, China
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fphar.2023.1218803
PMID 37547332
PQID 2847346126
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_db2ae6a37b1046879268d0bc938bfe37
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10399631
proquest_miscellaneous_2847346126
pubmed_primary_37547332
crossref_primary_10_3389_fphar_2023_1218803
crossref_citationtrail_10_3389_fphar_2023_1218803
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-20
PublicationDateYYYYMMDD 2023-07-20
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-20
  day: 20
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in pharmacology
PublicationTitleAlternate Front Pharmacol
PublicationYear 2023
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Aravinthan (B9) 2015; 39
Jeong (B70) 2008; 41
Yan (B186) 2014; 2014
Maes (B115) 2000; 27
Li (B94); 44
Allard (B5) 1994; 267
Drake (B46) 2017; 47
Tsutsumi (B162) 2011; 88
Kim (B77) 2010; 48
Xie (B183) 2007; 9
Moltedo (B121) 2019; 7
Song (B149) 2007; 178
Hamilton (B62) 2020; 115
Yang (B187) 2017; 8
Zeng (B198) 2015; 8
Cominacini (B36) 2015; 88
Li (B96); 47
Chen (B29) 2023; 300
Steudler (B150) 2022; 70
Tombo (B158) 2020; 158
Yu (B195) 2017; 7
Ai (B3) 2015; 5
Lopaschuk (B110) 2021; 128
Zhang (B203); 280
Brodmann (B21) 2020
Puri (B135) 2019; 10
Yu (B194) 2016; 20
Heusch (B66) 2020; 17
Wu (B181) 2011; 38
Vogel (B168) 2006; 175
Jin (B72) 2021; 42
Zuo (B215) 2018; 10
Toyama (B160) 2016; 351
Cárdenas (B26) 2011; 142
Zheng (B212) 2017; 66
Kroemer (B80) 2000; 6
Li (B100) 2018; 42
Liu (B104) 2020; 263
Goncalves (B55) 2015; 290
Lim (B102); 17
Zhang (B209) 2012; 365
Disatnik (B42) 2015; 93
Jones (B73) 2003; 100
Wu (B180) 2016; 35
Lee (B88) 2011; 301
Modesti (B120) 2021; 10
Wu (B179) 2022; 4
Pileggi (B134) 2021; 22
Wang (B174); 2013
Ho (B67) 2021; 10
Sun (B151); 11
Kowalczyk (B79) 2021; 22
Martinez (B117) 2010; 15
Adams (B1) 2001; 26
Chen (B32) 2013; 8
Nichols (B125) 1994; 303
Shi (B147) 2011; 49
Ashrafi (B10) 2013; 20
Osellame (B129) 2016; 129
Twig (B163) 2008; 27
Li (B98) 2016; 2016
Cui (B37) 2017; 7
Lee (B87) 2010; 40
Huang (B68) 2017; 814
Kaludercic (B74) 2013
Yu (B196) 2019; 75
Thompson (B156) 2020; 192
Voulgari (B169) 2010; 6
La Rovere (B85) 2016; 60
Kuwana (B83) 2005; 17
Li (B91) 2015; 94
Chen (B30) 2019; 120
Berridge (B17) 2000; 1
Wang (B175) 2015; 11
Green (B57) 2004; 305
Decuypere (B38) 2011; 1813
Dombi (B43) 2017; 25
Elgendy (B47) 2019; 124
Liu (B107); 172
Losóna (B111) 2013; 24
Wang (B176); 8
Kuida (B81) 1998; 94
Youle (B192) 2011; 12
Zhou (B213) 2018; 128
Tsushima (B161) 2020; 43
Hayyan (B64) 2016; 116
Guo (B60) 2011; 4
Li (B99) 2009; 34
Lee (B86) 2020; 11
Ratan (B139) 2021; 45
Li (B93); 9
Li (B95) 2014; 30
Wang (B177) 2008; 22
Yu (B193) 2015; 16
Zhang (B210); 21
Nolfi-Donegan (B126) 2020; 37
Novak (B127) 2010; 11
Song (B148) 2021; 10
Liesa (B101) 2009; 89
Zhang (B200); 49
Aon (B8) 2010; 1797
Faccenda (B48) 2020; 15
Zhang (B206); 109
Wang (B170) 2016; 40
Schneider (B146) 2019; 9
Huynh (B69) 2014; 142
Green (B56) 1998; 8924
Zhang (B201); 23
Tow (B159) 2022; 118
Zhang (B205) 2016; 2016
Alderton (B4) 2001; 357
Pankiv (B131) 2007; 282
Narendra (B123) 2010; 8
Newmeyer (B124) 2003; 112
Brookes (B22) 2004; 287
Guan (B59) 2002; 22
Vásquez-Trincado (B165) 2016; 594
Sarraf (B144) 2013; 496
Wang (B172) 2019; 2019
Li (B92); 1863
Chen (B33) 2022; 13
Ray (B140) 2012; 24
Fonseca (B52) 2019; 570
Ruprecht (B143) 2019; 176
Cai (B24) 2020; 9
Qi (B136) 2020; 29
Sun (B152); 5
Liu (B108) 2002; 22
Collins (B35) 2002; 21
Ma (B114) 2014; 9
Palaniyandi (B130) 2010; 7
Sun (B154) 2023; 28
Chen (B28) 2014; 54
Vives-Bauza (B167) 2010; 107
Ding (B41) 2021; 10
Yoo (B191) 2018; 41
Maffei Facino (B116) 1999; 65
Guan (B58) 2018; 18
Qin (B137) 2019; 67
Xia (B182) 2011; 2011
Baek (B13) 2012; 36
Ferro (B51) 2020; 98
Moris (B122) 2017; 5
Baburina (B11) 2021; 9
Kim (B76) 2016; 2016
Adams (B2) 2003; 17
Lo (B109) 2017; 18
Dorn (B45) 2015; 78
Boulton (B20) 2022; 10
Yellon (B189) 2007; 357
An (B6) 2019; 9
Kayama (B75) 2015; 16
Peng (B132) 2022; 13
Oh (B128) 2019; 20
Kuroda (B82) 2010; 107
Zhang (B207) 2007; 104
Zhang (B208) 2013; 62
Bhatti (B19) 2017; 1863
Jiang (B71) 2019; 15
Li (B97); 23
Bäcklund (B12) 2004; 47
Xu (B184) 2019; 120
Fan (B49) 2020; 44
Rovira-Llopis (B142) 2017; 11
Martucciello (B118) 2020; 21
Wu (B178) 2019; 2019
Tian (B157) 2017; 2017
Bugger (B23) 2020; 1866
Zhang (B199); 15
Delbridge (B39) 2017; 14
Feng (B50) 2018
Hall (B61) 2014; 171
Zhou (B214) 2011; 135
Liu (B106); 92
Yi (B190) 2010; 17
Yuan (B197) 2019; 74
Viola (B166) 2014; 23
Baughman (B16) 2011; 476
Xue (B185) 2020; 85
Betzenhauser (B18) 2008; 283
Luo (B113) 2013; 2013
Frey (B53) 2002; 1555
Sun (B153) 2019; 109
Chang (B27) 2007; 282
Campos (B25) 2016; 7
Kwong (B84) 2014; 21
Rasola (B138) 2010; 584
Angelova (B7) 2018; 592
Mensah (B119) 2019; 74
Pesant (B133) 2006; 69
Taguchi (B155) 2007; 282
Wang (B173) 2021; 14
Zhao (B211) 2014; 18
Harris (B63) 2000; 7
Chen (B31) 2001; 280
Zhang (B204); 18
Baines (B14) 2009; 72
Chistiakov (B34) 2018; 50
Hernandez-Resendiz (B65) 2020; 24
Dong (B44) 2016; 26
Van der Bliek (B164) 2013; 5
Wang (B171) 2012; 17
Rizzuto (B141) 2008; 8
Luo (B112) 2015; 10
Yardeni (B188) 2019; 12
Bartosz (B15) 2009; 77
Zhang (B202); 2019
Li (B90) 2020; 125
Kiyuna (B78) 2018; 129
Scherz-Shouval (B145) 2007; 17
Dietl (B40) 2017; 14
Fuster (B54) 2014; 64
Liu (B105) 2014; 5
Lepretti (B89) 2018; 10
Lim (B103); 37
References_xml – volume: 109
  start-page: 254
  year: 2019
  ident: B153
  article-title: Ginsenoside Rb3 protects cardiomyocytes against hypoxia/reoxygenation injury via activating the antioxidation signaling pathway of PERK/Nrf2/HMOX1
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2018.09.002
– volume: 15
  start-page: 71
  ident: B199
  article-title: Ginsenoside Rb1 protects against diabetic cardiomyopathy by regulating the adipocytokine pathway
  publication-title: J. Inflamm. Res.
  doi: 10.2147/JIR.S348866
– volume: 17
  start-page: 12746
  year: 2012
  ident: B171
  article-title: Total ginsenosides of radix ginseng modulates tricarboxylic acid cycle protein expression to enhance cardiac energy metabolism in ischemic rat heart tissues
  publication-title: Molecules
  doi: 10.3390/molecules171112746
– volume: 24
  start-page: 659
  year: 2013
  ident: B111
  article-title: Fis1, mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission
  publication-title: Mol. Biol. Cell.
  doi: 10.1091/mbc.E12-10-0721
– volume: 50
  start-page: 121
  year: 2018
  ident: B34
  article-title: The role of mitochondrial dysfunction in cardiovascular disease: A brief review
  publication-title: Ann. Med.
  doi: 10.1080/07853890.2017.1417631
– volume: 11
  start-page: 4518
  year: 2015
  ident: B175
  article-title: Ginsenoside Rg3 attenuates myocardial ischemia/reperfusion injury via Akt/endothelial nitric oxide synthase signaling and the B-cell lymphoma/B-cell lymphoma-associated X protein pathway
  publication-title: Mol. Med. Rep.
  doi: 10.3892/mmr.2015.3336
– volume: 44
  start-page: 258
  year: 2020
  ident: B49
  article-title: The role of ginsenoside Rb1, a potential natural glutathione reductase agonist, in preventing oxidative stress-induced apoptosis of H9C2 cells
  publication-title: J. Ginseng Res.
  doi: 10.1016/j.jgr.2018.12.004
– volume: 12
  start-page: eaaw3159
  year: 2019
  ident: B188
  article-title: Host mitochondria influence gut microbiome diversity: A role for ROS
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.aaw3159
– volume: 8
  start-page: 26255
  year: 2017
  ident: B187
  article-title: Ginsenoside Rg5 increases cardiomyocyte resistance to ischemic injury through regulation of mitochondrial hexokinase-II and dynamin-related protein 1
  publication-title: Cell. Death Dis.
  doi: 10.1038/cddis.2017.43
– volume: 115
  start-page: 38
  year: 2020
  ident: B62
  article-title: Increased RyR2 activity is exacerbated by calcium leak-induced mitochondrial ROS
  publication-title: Basic Res. Cardiol.
  doi: 10.1007/s00395-020-0797-z
– volume: 178
  start-page: 749
  year: 2007
  ident: B149
  article-title: OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L
  publication-title: J. Cell. Biol.
  doi: 10.1083/jcb.200704110
– volume: 7
  start-page: 44579
  year: 2017
  ident: B37
  article-title: Ginsenoside Rb1 protects against ischemia/reperfusion-induced myocardial injury via energy metabolism regulation mediated by RhoA signaling pathway
  publication-title: Sci. Rep.
  doi: 10.1038/srep44579
– volume: 1863
  start-page: 2835
  ident: B92
  article-title: Succinate accumulation impairs cardiac pyruvate dehydrogenase activity through GRP91-dependent and independent signaling pathways: Therapeutic effects of ginsenoside Rb1
  publication-title: Biochim. Biophys. Acta - Mol. Basis Dis.
  doi: 10.1016/j.bbadis.2017.07.017
– volume: 128
  start-page: 1487
  year: 2021
  ident: B110
  article-title: Cardiac energy metabolism in heart failure
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.121.318241
– volume: 41
  start-page: 11
  year: 2008
  ident: B70
  article-title: The role of mitochondria in apoptosis
  publication-title: BMB Rep.
  doi: 10.5483/bmbrep.2008.41.1.011
– volume: 21
  start-page: 1616
  year: 2002
  ident: B35
  article-title: Mitochondria are morphologically and functionally heterogeneous within cells
  publication-title: Collins EMBO J.
  doi: 10.1093/emboj/21.7.1616
– volume: 54
  start-page: 362
  year: 2014
  ident: B28
  article-title: A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy
  publication-title: Mol. Cell.
  doi: 10.1016/j.molcel.2014.02.034
– volume: 142
  start-page: 270
  year: 2011
  ident: B26
  article-title: Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria
  publication-title: NIH Public Access
  doi: 10.1016/j.cell.2010.06.007
– volume: 49
  start-page: 900
  year: 2011
  ident: B147
  article-title: Ginsenoside Rb3 ameliorates myocardial ischemia-reperfusion injury in rats
  publication-title: Pharm. Biol.
  doi: 10.3109/13880209.2011.554845
– volume: 280
  start-page: H2313
  year: 2001
  ident: B31
  article-title: Overexpression of Bcl-2 attenuates apoptosis and protects against myocardial I/R injury in transgenic mice
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.2001.280.5.H2313
– volume: 22
  start-page: 212
  year: 2002
  ident: B59
  article-title: Effect of ginsenoside-Rb 1 on cardiomyocyte apoptosis after ischemia and reperfusion in rats
  publication-title: J. Huazhong Univ. Sci. Technol. - Med. Sci.
  doi: 10.1007/bf02828182
– volume: 11
  start-page: 637
  year: 2017
  ident: B142
  article-title: Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2017.01.013
– volume: 78
  start-page: 123
  year: 2015
  ident: B45
  article-title: Functional implications of mitofusin 2-mediated mitochondrial-SR tethering
  publication-title: J. Mol. Cell. Cardiol.
  doi: 10.1016/j.yjmcc.2014.09.015
– volume: 8
  start-page: 119
  year: 2008
  ident: B141
  article-title: Ca2+ signaling, mitochondria and cell death
  publication-title: Curr. Mol. Med.
  doi: 10.2174/156652408783769571
– volume: 158
  start-page: 181
  year: 2020
  ident: B158
  article-title: Cardiac ischemia/reperfusion stress reduces inner mitochondrial membrane protein (mitofilin) levels during early reperfusion
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2020.06.039
– volume: 44
  start-page: 21
  ident: B94
  article-title: Ginsenoside Rg1 protects cardiomyocytes against hypoxia/reoxygenation injury via activation of Nrf2/HO-1 signaling and inhibition of JNK
  publication-title: Cell. Physiol. biochem.
  doi: 10.1159/000484578
– volume: 74
  start-page: 2529
  year: 2019
  ident: B119
  article-title: The global burden of cardiovascular diseases and risk factors: 2020 and beyond
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2019.10.009
– volume: 18
  start-page: 1744
  year: 2014
  ident: B211
  article-title: Myocardial protection of Ginseng fruit saponins in streptozotocin-induced diabetic rats
  publication-title: Chin. J. Lab. Diagn
– volume: 15
  start-page: 19017877
  year: 2019
  ident: B71
  article-title: Electrochemical monitoring of paclitaxel-induced ROS release from mitochondria inside single cells
  publication-title: Small
  doi: 10.1002/smll.201901787
– volume: 10
  start-page: 2463
  year: 2021
  ident: B41
  article-title: Mitochondrial biogenesis, mitochondrial dynamics, and mitophagy in the maturation of cardiomyocytes
  publication-title: Cells
  doi: 10.3390/cells10092463
– volume: 94
  start-page: 325
  year: 1998
  ident: B81
  article-title: Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9
  publication-title: Cell.
  doi: 10.1016/s0092-8674(00)81476-2
– volume: 10
  start-page: 3645
  year: 2019
  ident: B135
  article-title: Mul1 restrains Parkin-mediated mitophagy in mature neurons by maintaining ER-mitochondrial contacts
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11636-5
– volume: 10
  start-page: 82377
  year: 2018
  ident: B215
  article-title: CRTH2 promotes endoplasmic reticulum stress‐induced cardiomyocyte apoptosis through m‐calpain
  publication-title: EMBO Mol. Med.
  doi: 10.15252/emmm.201708237
– volume: 93
  start-page: 279
  year: 2015
  ident: B42
  article-title: New therapeutics to modulate mitochondrial dynamics and mitophagy in cardiac diseases
  publication-title: J. Mol. Med.
  doi: 10.1007/s00109-015-1256-4
– volume: 2019
  start-page: 9825061
  year: 2019
  ident: B178
  article-title: Mitophagy, mitochondrial dynamics, and homeostasis in cardiovascular aging
  publication-title: Oxid. Med. Cell. Longev.
  doi: 10.1155/2019/9825061
– volume: 303
  start-page: 461
  year: 1994
  ident: B125
  article-title: Comparison of the effects of Ca2+, adenine nucleotides and pH on the kinetic properties of mitochondrial NAD(+)-isocitrate dehydrogenase and oxoglutarate dehydrogenase from the yeast Saccharomyces cerevisiae and rat heart
  publication-title: Biochem. J.
  doi: 10.1042/bj3030461
– volume: 42
  start-page: 1
  year: 2018
  ident: B100
  article-title: Ginseng and obesity
  publication-title: J. Ginseng Res.
  doi: 10.1016/j.jgr.2016.12.005
– volume: 592
  start-page: 692
  year: 2018
  ident: B7
  article-title: Role of mitochondrial ROS in the brain: From physiology to neurodegeneration
  publication-title: FEBS Lett.
  doi: 10.1002/1873-3468.12964
– volume: 24
  start-page: 6571
  year: 2020
  ident: B65
  article-title: Targeting mitochondrial fusion and fission proteins for cardioprotection
  publication-title: J. Cell. Mol. Med.
  doi: 10.1111/jcmm.15384
– volume: 172
  start-page: 105843
  ident: B107
  article-title: Rg3 promotes the SUMOylation of SERCA2a and corrects cardiac dysfunction in heart failure
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2021.105843
– volume: 30
  start-page: 25
  year: 2014
  ident: B95
  article-title: Effects of ginsenoside Rg1 on high glucose-induced myocardial hypertrophy
  publication-title: China Acad. J. Electron. Publ. House
  doi: 10.13412/j.cnki.zyyl.2014.01.009
– volume: 594
  start-page: 509
  year: 2016
  ident: B165
  article-title: Mitochondrial dynamics, mitophagy and cardiovascular disease
  publication-title: J. Physiol.
  doi: 10.1113/JP271301
– volume: 74
  start-page: 157
  year: 2019
  ident: B197
  article-title: Ginsenoside Rg1 inhibits myocardial ischaemia and reperfusion injury via HIF-1α-ERK signalling pathways in a diabetic rat model
  publication-title: Pharmazie
  doi: 10.1691/ph.2019.8858
– volume: 9
  start-page: 150
  year: 2020
  ident: B24
  article-title: Mitophagy in alzheimer’s disease and other age-related neurodegenerative diseases
  publication-title: Cells
  doi: 10.3390/cells9010150
– volume: 8
  start-page: 14497
  year: 2015
  ident: B198
  article-title: Ginsenoside Rd mitigates myocardial ischemia-reperfusion injury via Nrf2/HO-1 signaling pathway
  publication-title: Int. J. Clin. Exp. Med.
– volume: 2013
  start-page: 454389
  ident: B174
  article-title: Ginsenoside Rb1 reduces isoproterenol-induced cardiomyocytes apoptosis in vitro and in vivo
  publication-title: Evidence-based Complement. Altern. Med.
  doi: 10.1155/2013/454389
– volume: 13
  start-page: 806216
  year: 2022
  ident: B33
  article-title: Inhibition of myocardial cell apoptosis is important mechanism for ginsenoside in the limitation of myocardial ischemia/reperfusion injury
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2022.806216
– volume: 10
  start-page: 1
  year: 2018
  ident: B89
  article-title: Omega-3 fatty acids and insulin resistance: Focus on the regulation of mitochondria and endoplasmic reticulum stress
  publication-title: Nutrients
  doi: 10.3390/nu10030350
– volume: 13
  start-page: 907757
  year: 2022
  ident: B132
  article-title: Signaling pathways related to oxidative stress in diabetic cardiomyopathy
  publication-title: Front. Endocrinol. (Lausanne).
  doi: 10.3389/fendo.2022.907757
– volume: 5
  start-page: 324
  year: 2017
  ident: B122
  article-title: The role of reactive oxygen species in myocardial redox signaling and regulation
  publication-title: Ann. Transl. Med.
  doi: 10.21037/atm.2017.06.17
– volume: 26
  start-page: 61
  year: 2001
  ident: B1
  article-title: Life-or-death decisions by the Bcl-2 protein family
  publication-title: Trends biochem. Sci.
  doi: 10.1016/S0968-0004(00)01740-0
– volume: 16
  start-page: 25234
  year: 2015
  ident: B75
  article-title: Diabetic cardiovascular disease induced by oxidative stress
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms161025234
– volume: 10
  start-page: 1317
  year: 2021
  ident: B120
  article-title: Mitochondrial Ca 2 + signaling in health, disease and therapy
  publication-title: Cells
  doi: 10.3390/cells10061317
– volume: 2017
  start-page: 8214541
  year: 2017
  ident: B157
  article-title: Roles and mechanisms of herbal medicine for diabetic cardiomyopathy: Current status and perspective
  publication-title: Oxid. Med. Cell. Longev.
  doi: 10.1155/2017/8214541
– volume: 171
  start-page: 1890
  year: 2014
  ident: B61
  article-title: Mitochondrial fusion and fission proteins: Novel therapeutic targets for combating cardiovascular disease
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/bph.12516
– volume: 570
  start-page: E34
  year: 2019
  ident: B52
  article-title: Mitochondrial fission requires DRP1 but not dynamins
  publication-title: Nature
  doi: 10.1038/s41586-019-1296-y
– volume: 14
  start-page: 1789
  year: 2021
  ident: B173
  article-title: Dual activity of ginsenoside rb1 in hypertrophic cardiomyocytes and activated macrophages: Implications for the therapeutic intervention of cardiac hypertrophy
  publication-title: J. Inflamm. Res.
  doi: 10.2147/JIR.S310633
– volume: 5
  start-page: 2
  ident: B152
  article-title: Protective effect of Ginseng fruit saponins combined with Total flavonoidsof murraya paniculata leaves on diabetic cardiomyopathy in rats
  publication-title: Ginseng Res.
  doi: 10.19403/.cnki.1671-1521.2020.05.001
– volume: 100
  start-page: 4891
  year: 2003
  ident: B73
  article-title: Endothelial nitric oxide synthase overexpression attenuates congestive heart failure in mice
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0837428100
– volume: 5
  start-page: 623
  year: 2014
  ident: B105
  article-title: Diabetic cardiomyopathy and its mechanisms: Role of oxidative stress and damage
  publication-title: J. Diabetes Investig.
  doi: 10.1111/jdi.12250
– volume: 37
  start-page: 283
  ident: B103
  article-title: Ginsenoside-Re ameliorates ischemia and reperfusion injury in the heart: A hemodynamics approach
  publication-title: J. Ginseng Res.
  doi: 10.5142/jgr.2013.37.283
– volume: 7
  start-page: 1182
  year: 2000
  ident: B63
  article-title: The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability
  publication-title: Cell. Death Differ.
  doi: 10.1038/sj.cdd.4400781
– volume: 18
  start-page: 297
  ident: B204
  article-title: Mitophagy in neurological disorders
  publication-title: J. Neuroinflammation
  doi: 10.1186/s12974-021-02334-5
– volume: 125
  start-page: 109913
  year: 2020
  ident: B90
  article-title: Ginsenoside Rb1 attenuates cardiomyocyte apoptosis induced by myocardial ischemia reperfusion injury through mTOR signal pathway
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2020.109913
– volume: 124
  start-page: 1520
  year: 2019
  ident: B47
  article-title: Medical therapy for heart failure caused by ischemic heart disease
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.118.313568
– volume: 4
  start-page: 79
  year: 2011
  ident: B60
  article-title: Ginseng inhibits cardiomyocyte hypertrophy and heart failure via nhe-1 inhibition and attenuation of calcineurin activation
  publication-title: Circ. Hear. Fail.
  doi: 10.1161/CIRCHEARTFAILURE.110.957969
– volume: 1813
  start-page: 1003
  year: 2011
  ident: B38
  article-title: The IP3 receptor-mitochondria connection in apoptosis and autophagy
  publication-title: Biochim. Biophys. Acta - Mol. Cell. Res.
  doi: 10.1016/j.bbamcr.2010.11.023
– volume: 29
  start-page: 19
  year: 2020
  ident: B136
  article-title: Ginsenoside Rb1 alleviates diabetic cardiomyopathy through up-regulating PGC-1α
  publication-title: Prog. Mod. Biomed.
  doi: 10.13241/j.cnki.pmb.2020.01.004
– volume: 70
  start-page: 2045
  year: 2022
  ident: B150
  article-title: Autoimmune neuroinflammation triggers mitochondrial oxidation in oligodendrocytes
  publication-title: Glia
  doi: 10.1002/glia.24235
– volume: 2016
  start-page: 6967853
  year: 2016
  ident: B205
  article-title: Ginsenoside Rg3 improves cardiac function after myocardial ischemia/reperfusion via attenuating apoptosis and inflammation
  publication-title: Evidence-based Complement. Altern. Med.
  doi: 10.1155/2016/6967853
– volume: 21
  start-page: 1905
  year: 2020
  ident: B118
  article-title: Natural products targeting ER stress, and the functional link to mitochondria
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21061905
– volume: 25
  start-page: 5597
  year: 2017
  ident: B43
  article-title: Modulating mitophagy in mitochondrial disease
  publication-title: Curr. Med. Chem.
  doi: 10.2174/0929867324666170616101741
– volume: 175
  start-page: 237
  year: 2006
  ident: B168
  article-title: Dynamic subcompartmentalization of the mitochondrial inner membrane
  publication-title: J. Cell. Biol.
  doi: 10.1083/jcb.200605138
– volume: 2016
  start-page: 1
  year: 2016
  ident: B98
  article-title: Cardioprotection of ginsenoside Rb1 against ischemia/reperfusion injury is associated with mitochondrial permeability transition pore opening inhibition
  publication-title: Chin. J. Integr. Med.
  doi: 10.1007/s11655-015-2433-6
– volume: 88
  start-page: 725
  year: 2011
  ident: B162
  article-title: Compound K, a metabolite of ginsenosides, induces cardiac protection mediated nitric oxide via Akt/PI3K pathway
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2011.02.011
– volume: 6
  start-page: 513
  year: 2000
  ident: B80
  article-title: Mitochondrial control of cell death
  publication-title: Nat. Med.
  doi: 10.1038/74994
– volume: 15
  start-page: 1480
  year: 2010
  ident: B117
  article-title: Calpain and caspase processing of caspase-12 contribute to the ER stress-induced cell death pathway in differentiated PC12 cells
  publication-title: Apoptosis
  doi: 10.1007/s10495-010-0526-4
– volume: 37
  start-page: 101674
  year: 2020
  ident: B126
  article-title: Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2020.101674
– volume: 12
  start-page: 9
  year: 2011
  ident: B192
  article-title: Mechanisms of mitophagy
  publication-title: Nat. Rev. Mol. Cell. Biol.
  doi: 10.1038/nrm3028
– volume: 23
  start-page: 759
  ident: B97
  article-title: Intraconversion of polar ginsenosides, their transformation into less-polar ginsenosides, and ginsenoside acetylation in ginseng flowers upon baking and steaming
  publication-title: Molecules
  doi: 10.3390/molecules23040759
– volume: 47
  start-page: 2589
  ident: B96
  article-title: Compound K inhibits autophagy-mediated apoptosis through activation of the PI3K-Akt signaling pathway thus protecting against ischemia/reperfusion injury
  publication-title: Cell. Physiol. biochem.
  doi: 10.1159/000491655
– volume: 11
  start-page: 45
  year: 2010
  ident: B127
  article-title: Nix is a selective autophagy receptor for mitochondrial clearance
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2009.256
– volume: 72
  start-page: 61
  year: 2009
  ident: B14
  article-title: The cardiac mitochondrion: Nexus of stress
  publication-title: Annu. Rev. Physiol.
  doi: 10.1146/annurev-physiol-021909-135929
– volume: 351
  start-page: 275
  year: 2016
  ident: B160
  article-title: Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress
  publication-title: Response Energy Stress
  doi: 10.1126/science.aab4138
– volume: 20
  start-page: 623
  year: 2016
  ident: B194
  article-title: Ginsenoside Rg1 ameliorates diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress-induced apoptosis in a streptozotocin-induced diabetes rat model
  publication-title: J. Cell. Mol. Med.
  doi: 10.1111/jcmm.12739
– volume: 2019
  start-page: 6046405
  ident: B202
  article-title: The effect of ginsenoside RB1, diazoxide, and 5-hydroxydecanoate on hypoxia-reoxygenation injury of H9C2 cardiomyocytes
  publication-title: Evidence-based Complement. Altern. Med.
  doi: 10.1155/2019/6046405
– volume: 7
  start-page: 880
  year: 2017
  ident: B195
  article-title: MIEF1/2 function as adaptors to recruit Drp1 to mitochondria and regulate the association of Drp1 with Mff
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-00853-x
– volume: 20
  start-page: 31
  year: 2013
  ident: B10
  article-title: The pathways of mitophagy for quality control and clearance of mitochondria
  publication-title: Cell. Death Differ.
  doi: 10.1038/cdd.2012.81
– volume: 814
  start-page: 151
  year: 2017
  ident: B68
  article-title: Rutin alleviates diabetic cardiomyopathy and improves cardiac function in diabetic ApoEknockout mice
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2017.08.023
– volume: 11
  start-page: 130
  year: 2020
  ident: B86
  article-title: Relationship between ginsenoside Rg3 and metabolic syndrome
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2020.00130
– volume: 14
  start-page: 338
  year: 2017
  ident: B40
  article-title: Targeting mitochondrial calcium handling and reactive oxygen species in heart failure
  publication-title: Curr. Heart Fail. Rep.
  doi: 10.1007/s11897-017-0347-7
– volume: 8
  start-page: e64229
  year: 2013
  ident: B32
  article-title: Cardiac peroxisome proliferator-activated receptor δ (PPARδ) as a new target for increased contractility without altering heart rate
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0064229
– volume: 300
  start-page: 115715
  year: 2023
  ident: B29
  article-title: Panax ginseng against myocardial ischemia/reperfusion injury: A review of preclinical evidence and potential mechanisms
  publication-title: J. Ethnopharmacol.
  doi: 10.1016/j.jep.2022.115715
– volume: 290
  start-page: 209
  year: 2015
  ident: B55
  article-title: Sites of superoxide and hydrogen peroxide production by muscle mitochondria assessed ex vivo under conditions mimicking rest and exercise
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.619072
– volume: 2011
  start-page: 767930
  year: 2011
  ident: B182
  article-title: Ginsenoside Rb1 preconditioning enhances eNOS expression and attenuates myocardial ischemia/reperfusion injury in diabetic rats
  publication-title: J. Biomed. Biotechnol.
  doi: 10.1155/2011/767930
– volume: 69
  start-page: 440
  year: 2006
  ident: B133
  article-title: Peroxisome proliferator-activated receptor delta (PPARdelta) activation protects H9c2 cardiomyoblasts from oxidative stress-induced apoptosis
  publication-title: Cardiovasc. Res.
  doi: 10.1016/j.cardiores.2005.10.019
– volume: 109
  start-page: 1016
  ident: B206
  article-title: Ginsenoside Rd contributes the attenuation of cardiac hypertrophy in vivo and in vitro
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2018.10.081
– volume: 107
  start-page: 15565
  year: 2010
  ident: B82
  article-title: NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1002178107
– volume: 135
  start-page: 287
  year: 2011
  ident: B214
  article-title: Ginseng protects rodent hearts from acute myocardial ischemia-reperfusion injury through GR/ER-activated RISK pathway in an endothelial NOS-dependent mechanism
  publication-title: J. Ethnopharmacol.
  doi: 10.1016/j.jep.2011.03.015
– volume: 40
  start-page: 692
  year: 2010
  ident: B87
  article-title: Oxidative stress and inflammation modulate peroxisome proliferator-activated receptors with regional discrepancy in diabetic heart
  publication-title: Eur. J. Clin. Invest.
  doi: 10.1111/j.1365-2362.2010.02318.x
– volume: 282
  start-page: 21583
  year: 2007
  ident: B27
  article-title: Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C700083200
– volume: 23
  start-page: 3025
  ident: B201
  article-title: Mitochondrial Ca2+ homeostasis: Emerging roles and clinical significance in cardiac remodeling
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms23063025
– volume: 282
  start-page: 24131
  year: 2007
  ident: B131
  article-title: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M702824200
– volume: 476
  start-page: 341
  year: 2011
  ident: B16
  article-title: Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter
  publication-title: Nature
  doi: 10.1038/nature10234
– volume: 26
  start-page: 7
  year: 2016
  ident: B44
  article-title: Rg1 prevents myocardial hypoxia/reoxygenation injury by regulating mitochondrial dynamics imbalance via modulation of glutamate dehydrogenase and mitofusin 2
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2015.11.003
– volume: 88
  start-page: 233
  year: 2015
  ident: B36
  article-title: Endoplasmic reticulum stress and Nrf2 signaling in cardiovascular diseases
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2015.05.027
– volume: 17
  start-page: 422
  year: 2007
  ident: B145
  article-title: ROS, mitochondria and the regulation of autophagy
  publication-title: Trends Cell. Biol.
  doi: 10.1016/j.tcb.2007.07.009
– volume: 42
  start-page: 655
  year: 2021
  ident: B72
  article-title: Drp1-dependent mitochondrial fission in cardiovascular disease
  publication-title: Acta Pharmacol. Sin.
  doi: 10.1038/s41401-020-00518-y
– volume: 10
  start-page: 612
  year: 2021
  ident: B148
  article-title: Nicotinamide treatment facilitates mitochondrial fission through Drp1 activation mediated by SIRT1-induced changes in cellular levels of cAMP and Ca2
  publication-title: Cells
  doi: 10.3390/cells10030612
– volume: 120
  start-page: 18388
  year: 2019
  ident: B184
  article-title: Ginsenoside Rg1 protects H9c2 cells against nutritional stress-induced injury via aldolase/AMPK/PINK1 signalling
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.29150
– volume: 104
  start-page: 18526
  year: 2007
  ident: B207
  article-title: Structural basis for recruitment of mitochondrial fission complexes by Fis1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0706441104
– volume: 48
  start-page: 1516
  year: 2010
  ident: B77
  article-title: The effects of ginseng total saponin, panaxadiol and panaxatriol on ischemia/reperfusion injury in isolated rat heart
  publication-title: Food Chem. Toxicol.
  doi: 10.1016/j.fct.2010.03.018
– volume: 107
  start-page: 378
  year: 2010
  ident: B167
  article-title: PINK1-dependent recruitment of Parkin to mitochondria in mitophagy
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0911187107
– volume: 112
  start-page: 481
  year: 2003
  ident: B124
  article-title: Mitochondria: Releasing power for life and unleashing the machineries of death
  publication-title: Cell.
  doi: 10.1016/S0092-8674(03)00116-8
– volume: 2014
  start-page: 149195
  year: 2014
  ident: B186
  article-title: Ginsenoside Rb1 protects neonatal rat cardiomyocytes from hypoxia/ischemia induced apoptosis and inhibits activation of the mitochondrial apoptotic pathway
  publication-title: Evidence-based Complement. Altern. Med.
  doi: 10.1155/2014/149195
– volume: 9
  start-page: 8492
  year: 2019
  ident: B146
  article-title: Single organelle analysis to characterize mitochondrial function and crosstalk during viral infection
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-44922-9
– volume: 49
  start-page: 4019
  ident: B200
  article-title: Ginsenoside Rg5 induces apoptosis in human esophageal cancer cells through the phosphoinositide-3 kinase/protein kinase B signaling pathway
  publication-title: Mol. Med. Rep.
  doi: 10.3892/mmr.2019.10093
– volume: 60
  start-page: 74
  year: 2016
  ident: B85
  article-title: Intracellular Ca2+ signaling and Ca2+ microdomains in the control of cell survival, apoptosis and autophagy
  publication-title: Cell. Calcium
  doi: 10.1016/j.ceca.2016.04.005
– volume: 1555
  start-page: 196
  year: 2002
  ident: B53
  article-title: Insight into mitochondrial structure and function from electron tomography
  publication-title: Biochim. Biophys. Acta - Bioenerg.
  doi: 10.1016/S0005-2728(02)00278-5
– volume: 89
  start-page: 799
  year: 2009
  ident: B101
  article-title: Mitochondrial dynamics in mammalian health and disease
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00030.2008
– volume: 11
  start-page: 532041
  ident: B151
  article-title: Ginsenoside Re treatment attenuates myocardial hypoxia/reoxygenation injury by inhibiting HIF-1α ubiquitination
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2020.532041
– volume: 10
  start-page: 01447333
  year: 2015
  ident: B112
  article-title: The long-term consumption of ginseng extract reduces the susceptibility of intermediate-aged hearts to acute ischemia reperfusion injury
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0144733
– volume: 1
  start-page: 11
  year: 2000
  ident: B17
  article-title: The versatility and universality of calcium signalling
  publication-title: Nat. Rev. Mol. Cell. Biol.
  doi: 10.1038/35036035
– volume: 9
  start-page: 78
  ident: B93
  article-title: Ginsenoside Rg1 ameliorates rat myocardial ischemia-reperfusion injury by modulating energy metabolism pathways
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2018.00078
– volume: 118
  start-page: 2819
  year: 2022
  ident: B159
  article-title: SR-mitochondria crosstalk shapes Ca signalling to impact pathophenotype in disease models marked by dysregulated intracellular Ca release
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvab324
– volume: 142
  start-page: 375
  year: 2014
  ident: B69
  article-title: Diabetic cardiomyopathy: Mechanisms and new treatment strategies targeting antioxidant signaling pathways
  publication-title: Pharmacol. Ther.
  doi: 10.1016/j.pharmthera.2014.01.003
– volume: 22
  start-page: 13384
  year: 2021
  ident: B79
  article-title: Mitochondrial oxidative stress—A causative factor and therapeutic target in many diseases
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms222413384
– volume: 496
  start-page: 372
  year: 2013
  ident: B144
  article-title: Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization
  publication-title: Nature
  doi: 10.1038/nature12043
– volume: 282
  start-page: 11521
  year: 2007
  ident: B155
  article-title: Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M607279200
– volume: 17
  start-page: 2481
  year: 2003
  ident: B2
  article-title: Ways of dying: Multiple pathways to apoptosis
  publication-title: Genes. Dev.
  doi: 10.1101/gad.1126903
– volume: 9
  start-page: 1036288
  year: 2014
  ident: B114
  article-title: Ginsenoside Rb3 protects cardiomyocytes against ischemia-reperfusion injury via the inhibition of JNK-mediated NF-κB pathway: A mouse cardiomyocyte model
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0103628
– volume: 20
  start-page: 4279
  year: 2019
  ident: B128
  article-title: Ginsenoside compound K induces ros-mediated apoptosis and autophagic inhibition in human neuroblastoma cells in vitro and in vivo
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20174279
– volume: 8
  start-page: e1000298
  year: 2010
  ident: B123
  article-title: PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000298
– volume: 24
  start-page: 981
  year: 2012
  ident: B140
  article-title: Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling
  publication-title: Cell. Signal.
  doi: 10.1016/j.cellsig.2012.01.008
– volume: 62
  start-page: 50
  year: 2013
  ident: B208
  article-title: The ginsenoside Rg1 prevents transverse aortic constriction-induced left ventricular hypertrophy and cardiac dysfunction by inhibiting fibrosis and enhancing angiogenesis
  publication-title: J. Cardiovasc. Pharmacol.
  doi: 10.1097/FJC.0b013e31828f8d45
– volume: 10
  start-page: 2103
  year: 2021
  ident: B67
  article-title: Role of irisin in myocardial infarction, heart failure, and cardiac hypertrophy
  publication-title: Cells
  doi: 10.3390/cells10082103
– volume: 17
  start-page: 1006
  year: 2010
  ident: B190
  article-title: Total ginsenosides increase coronary perfusion flow in isolated rat hearts through activation of PI3K/Akt-eNOS signaling
  publication-title: Phytomedicine
  doi: 10.1016/j.phymed.2010.06.012
– volume: 75
  start-page: 91
  year: 2019
  ident: B196
  article-title: Ginsenoside Re preserves cardiac function and ameliorates left ventricular remodeling in a rat model of myocardial infarction
  publication-title: J. Cardiovasc. Pharmacol.
  doi: 10.1097/FJC.0000000000000752
– volume: 9
  start-page: 1102
  year: 2007
  ident: B183
  article-title: Autophagosome formation: Core machinery and adaptations
  publication-title: Nat. Cell. Biol.
  doi: 10.1038/ncb1007-1102
– volume: 5
  start-page: a011072
  year: 2013
  ident: B164
  article-title: Mechanisms of mitochondrial fission and fusion
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a011072
– volume: 94
  start-page: 97
  year: 2015
  ident: B91
  article-title: Analyzing the anti-ischemia–reperfusion injury effects of ginsenoside Rb1 mediated through the inhibition of p38α MAPK
  publication-title: Can. J. Physiol. Pharmacol.
  doi: 10.1139/cjpp-2014-0164
– volume: 357
  start-page: 1121
  year: 2007
  ident: B189
  article-title: Myocardial reperfusion injury
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra071667
– volume: 28
  start-page: 2928
  year: 2023
  ident: B154
  article-title: Discrepancy study of the chemical constituents of panax ginseng from different growth environments with UPLC-MS-based metabolomics strategy
  publication-title: Molecules
  doi: 10.3390/molecules28072928
– volume: 22
  start-page: 305
  year: 2002
  ident: B108
  article-title: Effect of ginsenoside Re on cardiomyocyte apoptosis and expression of bcl-2/bax gene after ischemia and reperfusion in rats
  publication-title: J. Huazhong Univ. Sci. Technol.
  doi: 10.1007/BF02896771
– volume: 21
  start-page: 261
  ident: B210
  article-title: The effects of ginsenoside Rb1 on cardiac function and cardiocyte apoptosis in diabetes rats
  publication-title: J. Trop. Med. Mar.
  doi: 10.3969/j.issn.1672-3619.2021.03.002
– volume: 36
  start-page: 119
  year: 2012
  ident: B13
  article-title: Recent methodology in Ginseng analysis
  publication-title: J. Ginseng Res.
  doi: 10.5142/jgr.2012.36.2.119
– volume: 5
  start-page: 26346
  year: 2015
  ident: B3
  article-title: Ginsenoside Rb1 prevents hypoxia-reoxygenation-induced apoptosis in H9c2 cardiomyocytes via an estrogen receptor-dependent crosstalk among the Akt, JNK, and ERK 1/2 pathways using a label-free quantitative proteomics analysis
  publication-title: RSC Adv.
  doi: 10.1039/c5ra02432c
– volume: 65
  start-page: 614
  year: 1999
  ident: B116
  article-title: Panax ginseng administration in the rat prevents myocardial ischemia-reperfusion damage induced by hyperbaric oxygen: Evidence for an antioxidant intervention
  publication-title: Planta Med.
  doi: 10.1055/s-1999-14034
– start-page: 1990
  volume-title: Global Burden of Cardiovascular Diseases and Risk Factors
  year: 2020
  ident: B21
– volume: 18
  start-page: 1600
  year: 2018
  ident: B58
  article-title: Induction of apoptosis by Bigelovii A through inhibition of NF-?B activity
  publication-title: Mol. Med. Rep.
  doi: 10.3892/mmr.2018.9104
– volume: 192
  start-page: 111380
  year: 2020
  ident: B156
  article-title: Targeting ER stress and calpain activation to reverse age-dependent mitochondrial damage in the heart
  publication-title: Mech. Ageing Dev.
  doi: 10.1016/j.mad.2020.111380
– volume: 98
  start-page: 129
  year: 2020
  ident: B51
  article-title: Autophagy and mitophagy in cancer metabolic remodelling
  publication-title: Semin. Cell. Dev. Biol.
  doi: 10.1016/j.semcdb.2019.05.029
– volume: 2013
  start-page: 7826
  year: 2013
  ident: B113
  article-title: Effectiveness of panax ginseng on acute myocardial ischemia reperfusion injury was abolished by flutamide via endogenous testosterone-mediated akt pathway. Evidence-based Complement
  publication-title: Altern. Med.
  doi: 10.1155/2013/817826
– volume: 64
  start-page: 520
  year: 2014
  ident: B54
  article-title: Global burden of cardiovascular disease: Time to implement feasible strategies and to monitor results
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2014.06.1151
– volume: 7
  start-page: 172
  year: 2019
  ident: B121
  article-title: The mitochondria–endoplasmic reticulum contacts and their critical role in aging and age-associated diseases
  publication-title: Front. Cell. Dev. Biol.
  doi: 10.3389/fcell.2019.00172
– volume: 116
  start-page: 3029
  year: 2016
  ident: B64
  article-title: Superoxide ion: Generation and chemical implications
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00407
– volume: 16
  start-page: 344
  year: 2015
  ident: B193
  article-title: Ginsenoside Rg1 ameliorates oxidative stress and myocardial apoptosis in streptozotocin-induced diabetic rats
  publication-title: J. Zhejiang Univ. Sci. B
  doi: 10.1631/jzus.B1400204
– volume: 18
  start-page: 1364
  year: 2017
  ident: B109
  article-title: Ginsenoside Rh2 improves cardiac fibrosis via PPARδ–STAT3 signaling in type 1-like diabetic rats
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms18071364
– volume: 283
  start-page: 21579
  year: 2008
  ident: B18
  article-title: ATP modulation of Ca2+ release by type-2 and type-3 inositol (1, 4, 5)-triphosphate receptors: Differing ATP sensitivities and molecular determinants of action
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M801680200
– volume: 9
  start-page: 1793
  year: 2021
  ident: B11
  article-title: The identification of prohibitin in the rat heart mitochondria in heart failure
  publication-title: Biomedicines
  doi: 10.3390/biomedicines9121793
– volume: 85
  start-page: 4039
  year: 2020
  ident: B185
  article-title: Ginsenoside Rb2 alleviates myocardial ischemia/reperfusion injury in rats through SIRT1 activation
  publication-title: J. Food Sci.
  doi: 10.1111/1750-3841.15505
– volume: 305
  start-page: 626
  year: 2004
  ident: B57
  article-title: The pathophysiology of mitochondrial cell death
  publication-title: Science
  doi: 10.1126/science.1099320
– volume: 67
  start-page: 14074
  year: 2019
  ident: B137
  article-title: Ginsenoside-Rb1 improved diabetic cardiomyopathy through regulating calcium signaling by alleviating protein O-GlcNAcylation
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.9b05706
– volume: 22
  start-page: e13164
  year: 2021
  ident: B134
  article-title: The lifecycle of skeletal muscle mitochondria in obesity
  publication-title: Obes. Rev.
  doi: 10.1111/obr.13164
– volume: 14
  start-page: 412
  year: 2017
  ident: B39
  article-title: Myocardial stress and autophagy: Mechanisms and potential therapies
  publication-title: Nat. Rev. Cardiol.
  doi: 10.1038/nrcardio.2017.35
– volume: 17
  start-page: 773
  year: 2020
  ident: B66
  article-title: Myocardial ischaemia–reperfusion injury and cardioprotection in perspective
  publication-title: Nat. Rev. Cardiol.
  doi: 10.1038/s41569-020-0403-y
– volume-title: The structure-activity relationship of ginsenosides on hypoxia-reoxygenation induced apoptosis of cardiomyocytes
  year: 2018
  ident: B50
– volume: 17
  start-page: 525
  year: 2005
  ident: B83
  article-title: BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly
  publication-title: Mol. Cell.
  doi: 10.1016/j.molcel.2005.02.003
– volume: 1863
  start-page: 1066
  year: 2017
  ident: B19
  article-title: Mitochondrial dysfunction and oxidative stress in metabolic disorders — a step towards mitochondria based therapeutic strategies
  publication-title: Biochim. Biophys. Acta - Mol. Basis Dis.
  doi: 10.1016/j.bbadis.2016.11.010
– volume: 35
  start-page: 1368
  year: 2016
  ident: B180
  article-title: FUNDC 1 regulates mitochondrial dynamics at the ER –mitochondrial contact site under hypoxic conditions
  publication-title: EMBO J.
  doi: 10.15252/embj.201593102
– volume: 365
  start-page: 243
  year: 2012
  ident: B209
  article-title: Ginsenoside Rg1 inhibits autophagy in H9c2 cardiomyocytes exposed to hypoxia/reoxygenation
  publication-title: Mol. Cell. Biochem.
  doi: 10.1007/s11010-012-1265-3
– volume: 43
  start-page: 286
  year: 2020
  ident: B161
  article-title: Emerging evidence for crosstalk between Nrf2 and mitochondria in physiological homeostasis and in heart disease
  publication-title: Arch. Pharm. Res.
  doi: 10.1007/s12272-019-01188-z
– volume: 1797
  start-page: 865
  year: 2010
  ident: B8
  article-title: Redox-optimized ROS balance: A unifying hypothesis
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbabio.2010.02.016
– volume: 176
  start-page: 435
  year: 2019
  ident: B143
  article-title: The molecular mechanism of transport by the mitochondrial ADP/ATP carrier
  publication-title: Cell.
  doi: 10.1016/j.cell.2018.11.025
– volume: 41
  start-page: 18
  year: 2018
  ident: B191
  article-title: A molecular approach to mitophagy and mitochondrial dynamics
  publication-title: Mol. Cells
  doi: 10.14348/molcells.2018.2277
– volume: 120
  start-page: 109487
  year: 2019
  ident: B30
  article-title: Ginsenoside Rb3 regulates energy metabolism and apoptosis in cardiomyocytes via activating PPARα pathway
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2019.109487
– volume: 34
  start-page: 324
  year: 2009
  ident: B99
  article-title: Effect of ginseng total saponins combined with Coptis berberine on plasma BNP and myocardial cell calcium concentration in chronic heart failure rats
  publication-title: China J. Chin. Materia Medica
  doi: 10.3321/j.issn:1001-5302.2009.03.020
– volume: 8
  start-page: 709566
  ident: B176
  article-title: Ginsenoside Rd attenuates myocardial ischemia/reperfusion injury via akt/GSK-3β signaling and inhibition of the mitochondria-dependent apoptotic pathway
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0070956
– start-page: 34
  year: 2013
  ident: B74
  article-title: Monoamine oxidases as sources of oxidants in the heart
  publication-title: J. Mol. Cell. Cardiol.
  doi: 10.1016/j.yjmcc.2013.12.032
– volume: 128
  start-page: 3716
  year: 2018
  ident: B213
  article-title: Mitochondrial dysfunction in pathophysiology of heart failure
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI120849
– volume: 8924
  start-page: 267
  year: 1998
  ident: B56
  article-title: The central executioners of apoptosis: Caspases or mitochondria?
  publication-title: Cell. Biol.
  doi: 10.1016/s0962-8924(98)01273-2
– volume: 357
  start-page: 593
  year: 2001
  ident: B4
  article-title: Nitric oxide synthases: Structure, function and inhibition
  publication-title: Biochem. J.
  doi: 10.1042/0264-6021:3570593
– volume: 267
  start-page: H742
  year: 1994
  ident: B5
  article-title: Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts
  publication-title: Am. J. Physiol. - Hear. Circ. Physiol.
  doi: 10.1152/ajpheart.1994.267.2.h742
– volume: 21
  start-page: 206
  year: 2014
  ident: B84
  article-title: Physiological and pathological roles of the mitochondrial permeability transition pore in the heart
  publication-title: Cell. Metab.
  doi: 10.1016/j.cmet.2014.12.001
– volume: 280
  start-page: 119716
  ident: B203
  article-title: Silent information regulator 1 suppresses epithelial-to-mesenchymal transition in lung cancer cells via its regulation of mitochondria status
  publication-title: Life Sci.
  doi: 10.1016/j.lfs.2021.119716
– volume: 45
  start-page: 199
  year: 2021
  ident: B139
  article-title: Pharmacological potential of ginseng and its major component ginsenosides
  publication-title: J. Ginseng Res.
  doi: 10.1016/j.jgr.2020.02.004
– volume: 77
  start-page: 1303
  year: 2009
  ident: B15
  article-title: Reactive oxygen species: Destroyers or messengers?
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2008.11.009
– volume: 7
  start-page: e95
  year: 2010
  ident: B130
  article-title: Regulation of mitochondrial processes: A target for heart failure
  publication-title: Drug Discov. Today Dis. Mech.
  doi: 10.1016/j.ddmec.2010.07.002
– volume: 66
  start-page: 217
  year: 2017
  ident: B212
  article-title: Ginsenoside Rb1 improves cardiac function and remodeling in heart failure
  publication-title: Exp. Anim.
  doi: 10.1538/expanim.16-0121
– volume: 27
  start-page: 257
  year: 2000
  ident: B115
  article-title: Differential modulation of inositol 1,4,5,-trisphosphate receptor type 1 and type 3 by ATP
  publication-title: Cell. Calcium
  doi: 10.1054/ceca.2000.0121
– volume: 301
  start-page: 1924
  year: 2011
  ident: B88
  article-title: Mitochondrial autophagy by bnip3 involves drp1-mediated mitochondrial fission and recruitment of parkin in cardiac myocytes
  publication-title: Am. J. Physiol. - Hear. Circ. Physiol.
  doi: 10.1152/ajpheart.00368.2011
– volume: 47
  start-page: 110
  year: 2017
  ident: B46
  article-title: Expanding perspectives on the significance of mitophagy in cancer
  publication-title: Semin. Cancer Biol.
  doi: 10.1016/j.semcancer.2017.04.008
– volume: 27
  start-page: 433
  year: 2008
  ident: B163
  article-title: Fission and selective fusion govern mitochondrial segregation and elimination by autophagy
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601963
– volume: 23
  start-page: 602
  year: 2014
  ident: B166
  article-title: How does calcium regulate mitochondrial energetics in the heart? - new insights
  publication-title: Hear. Lung Circ.
  doi: 10.1016/j.hlc.2014.02.009
– volume: 17
  start-page: 283
  ident: B102
  article-title: Korean red ginseng induced cardioprotection against myocardial ischemia in Guinea pig
  publication-title: Korean J. Physiol. Pharmacol.
  doi: 10.4196/kjpp.2013.17.4.283
– volume: 287
  start-page: C817
  year: 2004
  ident: B22
  article-title: Calcium, ATP, and ROS: A mitochondrial love-hate triangle
  publication-title: Am. J. Physiol. - Cell. Physiol.
  doi: 10.1152/ajpcell.00139.2004
– volume: 47
  start-page: 325
  year: 2004
  ident: B12
  article-title: Sustained cardiomyocyte apoptosis and left ventricular remodelling after myocardial infarction in experimental diabetes
  publication-title: Diabetologia
  doi: 10.1007/s00125-003-1311-5
– volume: 40
  start-page: 382
  year: 2016
  ident: B170
  article-title: Rapid characterization of ginsenosides in the roots and rhizomes of panax ginseng by UPLC-DAD-QTOF-MS/MS and simultaneous determination of 19 ginsenosides by HPLC-ESI-MS
  publication-title: J. Ginseng Res.
  doi: 10.1016/j.jgr.2015.12.001
– volume: 4
  start-page: 16
  year: 2022
  ident: B179
  article-title: Rational use of drugs for heart disease is important
  publication-title: China Acad. J. Electron. Publ. House
– volume: 6
  start-page: 883
  year: 2010
  ident: B169
  article-title: Diabetic cardiomyopathy: From the pathophysiology of the cardiac myocytes to current diagnosis and management strategies
  publication-title: Vasc. Health Risk Manag.
  doi: 10.2147/VHRM.S11681
– volume: 129
  start-page: 155
  year: 2018
  ident: B78
  article-title: Targeting mitochondrial dysfunction and oxidative stress in heart failure: Challenges and opportunities
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2018.09.019
– volume: 92
  start-page: 153717
  ident: B106
  article-title: A comprehensive review on the phytochemistry, pharmacokinetics, and antidiabetic effect of Ginseng
  publication-title: Phytomedicine
  doi: 10.1016/j.phymed.2021.153717
– volume: 129
  start-page: 2170
  year: 2016
  ident: B129
  article-title: Cooperative and independent roles of the Drp1 adaptors Mff, MiD49 and MiD51 in mitochondrial fission
  publication-title: J. Cell. Sci.
  doi: 10.1242/jcs.185165
– volume: 7
  start-page: 479
  year: 2016
  ident: B25
  article-title: Mitochondrial quality control in cardiac diseases
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2016.00479
– volume: 38
  start-page: 4327
  year: 2011
  ident: B181
  article-title: Protective effect of ginsenoside Rb1 against myocardial ischemia/reperfusion injury in streptozotocin-induced diabetic rats
  publication-title: Mol. Biol. Rep.
  doi: 10.1007/s11033-010-0558-4
– volume: 263
  start-page: 112792
  year: 2020
  ident: B104
  article-title: Traditional uses, chemical diversity and biological activities of panax L. (araliaceae): A review
  publication-title: J. Ethnopharmacol.
  doi: 10.1016/j.jep.2020.112792
– volume: 584
  start-page: 1989
  year: 2010
  ident: B138
  article-title: Signal transduction to the permeability transition pore
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2010.02.022
– volume: 39
  start-page: 206
  year: 2015
  ident: B9
  article-title: Ginseng total saponin attenuates myocardial injury via anti-oxidative and anti-inflammatory properties
  publication-title: J. Ginseng Res.
  doi: 10.1016/j.jgr.2014.12.001
– volume: 22
  start-page: 443
  year: 2008
  ident: B177
  article-title: Ginsenoside Rb1 preconditioning protects against myocardial infarction after regional ischemia and reperfusion by activation of phosphatidylinositol-3- kinase signal transduction
  publication-title: Cardiovasc. Drugs Ther.
  doi: 10.1007/s10557-008-6129-4
– volume: 10
  start-page: 849962
  year: 2022
  ident: B20
  article-title: Mitochondrial fission and fusion in tumor progression to metastasis
  publication-title: Front. Cell. Dev. Biol.
  doi: 10.3389/fcell.2022.849962
– volume: 2016
  start-page: 2483163
  year: 2016
  ident: B76
  article-title: Therapeutic strategies for oxidative stress-related cardiovascular diseases: Removal of excess reactive oxygen species in adult stem cells
  publication-title: Oxid. Med. Cell. Longev.
  doi: 10.1155/2016/2483163
– volume: 9
  start-page: 25107
  year: 2019
  ident: B6
  article-title: Ginsenoside Rk1 inhibits cell proliferation and promotes apoptosis in lung squamous cell carcinoma by calcium signaling pathway
  publication-title: RSC Adv.
  doi: 10.1039/c9ra05037j
– volume: 2019
  start-page: 3714508
  year: 2019
  ident: B172
  article-title: Ginsenoside Re improves isoproterenol-induced myocardial fibrosis and heart failure in rats
  publication-title: Evidence-based Complement. Altern. Med.
  doi: 10.1155/2019/3714508
– volume: 15
  start-page: 565
  year: 2020
  ident: B48
  article-title: Mitochondria regulate inflammatory paracrine signalling in neurodegeneration
  publication-title: J. Neuroimmune Pharmacol.
  doi: 10.1007/s11481-020-09952-5
– volume: 1866
  start-page: 165768
  year: 2020
  ident: B23
  article-title: Mitochondrial ROS in myocardial ischemia reperfusion and remodeling
  publication-title: Biochim. Biophys. Acta - Mol. Basis Dis.
  doi: 10.1016/j.bbadis.2020.165768
SSID ssj0000399364
Score 2.3576334
SecondaryResourceType review_article
Snippet Heart diseases have a high incidence and mortality rate, and seriously affect people’s quality of life. Mitochondria provide energy for the heart to function...
Heart diseases have a high incidence and mortality rate, and seriously affect people's quality of life. Mitochondria provide energy for the heart to function...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1218803
SubjectTerms ginsenosides
heart disease
mechanism
mitochondria
Panax ginseng
Pharmacology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp1xKH2nrtikqlFwaE9t6uremNIRCyh4SCPQgJGumCRRtyDrQ_ffR2M5mt5T2kqstY6FvRjPSzHzD2AdpWhtljaUGE0opYtY5qLA0MXqQqCpEiuiefNfHZ_LbuTpfa_VFOWEjPfC4cAcxNB60FyZQNNKattE2VqFrhQ0IYqgjzzZv7TA17MFkd7Ucq2TyKaw9wKsLT_yfjSBChSy1YsMSDYT9f_My_0yWXLM-R0_Y48lt5J_H6T5ljyA9Y3uzkXd6uc9P78uoFvt8j8_uGamXz9mPk6y3eZ9LkcSNx-WCzBlBwi8Tp57WPZ8iNYtPfDbvKYUoD1wrzuJT4gefI5_55H9zuqmG9HOHnR19Pf1yXE5dFcouH4X7EkEJ3WVHKmRvxHYRjQigOoioFMjQElQadQgKG2NqbINts9_QdDZ6rdGLF2wrzRO8YrwVyhNhoa-1lV2lPGCoKMNTgNURoWD13Qq7bqIcp84Xv1w-ehAqbkDFESpuQqVgH1ffXI2EG_8cfUjArUYSWfbwIIuQm0TI_U-ECvb-DnaXlYsiJj7B_GbhyHYLmZ1AXbCXoxisfkW9g40QTcHshoBszGXzTbq8GAi8KfyeN7769UPM_g3bphWh--amesu2-usb2M2OUh_eDTpxC0SGFGg
  priority: 102
  providerName: Directory of Open Access Journals
Title Mitochondrial dysfunction in heart diseases: Potential therapeutic effects of Panax ginseng
URI https://www.ncbi.nlm.nih.gov/pubmed/37547332
https://www.proquest.com/docview/2847346126
https://pubmed.ncbi.nlm.nih.gov/PMC10399631
https://doaj.org/article/db2ae6a37b1046879268d0bc938bfe37
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZpeuml9F2nbVCh5NK4ta2nCyE0pSEUtuwhC4EehGRJSSDI6dqB7L-vxtZusiHtoVdbwkbfjGZGM_oGoQ9U1NLS0ufcCZNTYqPOucLnwlrtqGeF95DRnfzkRzP644SdbKBlu6O0gN29oR30k5rNLz5d_17sR4Xfg4gz2tvP_vJMA7VnRYArIQokeYAeRsskoKPBJLn7w84M1pjT8e7MX6au2aeBxv8-3_NuCeUtm3T4BD1OziT-OqL_FG248AztTEc26sUuPr65XNXt4h08veGpXjxHvyZRm-MCBAtCiO2iAyMHQOHzgKHTdY9T_qb7gqdtD4VFceCtK1s4lYPg1uOpDvoaw_m1C6cv0Ozw-_G3ozz1WsibGCD3uXeM8Ca6Vyb6KLKxXhDjWOOsZ8xRUwOA3HNjmK-EKH1tZB29iaqRVnPuNXmJNkMb3GuEa8I00BjqkkvaFEw7bwqo-yROcutdhsrlCqsmEZFDP4wLFQMSQEUNqChARSVUMvRxNedypOH45-gDAG41Eii0hwft_FQljVTWVNrx-KcG0txS1BWXtjBNTaTxjogMvV_CrqLKQR5FB9dedQosOqHRNeQZejWKwepT0FFYEFJlSK4JyNq_rL8J52cDrTck5eN2WG79_9Q36BGsA5w9V8VbtNnPr9y76DT1Zns4bNge9OEPZ8kckA
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondrial+dysfunction+in+heart+diseases%3A+Potential+therapeutic+effects+of+Panax+ginseng&rft.jtitle=Frontiers+in+pharmacology&rft.au=Cao%2C+Xinxin&rft.au=Yao%2C+Fan&rft.au=Zhang%2C+Bin&rft.au=Sun%2C+Xiaobo&rft.date=2023-07-20&rft.pub=Frontiers+Media+S.A&rft.eissn=1663-9812&rft.volume=14&rft_id=info:doi/10.3389%2Ffphar.2023.1218803&rft.externalDocID=PMC10399631
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1663-9812&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1663-9812&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1663-9812&client=summon