Mitochondrial dysfunction in heart diseases: Potential therapeutic effects of Panax ginseng
Heart diseases have a high incidence and mortality rate, and seriously affect people’s quality of life. Mitochondria provide energy for the heart to function properly. The process of various heart diseases is closely related to mitochondrial dysfunction. Panax ginseng ( P. ginseng ), as a traditiona...
Saved in:
Published in | Frontiers in pharmacology Vol. 14; p. 1218803 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
20.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Heart diseases have a high incidence and mortality rate, and seriously affect people’s quality of life. Mitochondria provide energy for the heart to function properly. The process of various heart diseases is closely related to mitochondrial dysfunction.
Panax ginseng
(
P. ginseng
), as a traditional Chinese medicine, is widely used to treat various cardiovascular diseases. Many studies have confirmed that
P. ginseng
and ginsenosides can regulate and improve mitochondrial dysfunction. Therefore, the role of mitochondria in various heart diseases and the protective effect of
P. ginseng
on heart diseases by regulating mitochondrial function were reviewed in this paper, aiming to gain new understanding of the mechanisms, and promote the clinical application of
P. ginseng
. |
---|---|
AbstractList | Heart diseases have a high incidence and mortality rate, and seriously affect people’s quality of life. Mitochondria provide energy for the heart to function properly. The process of various heart diseases is closely related to mitochondrial dysfunction.
Panax ginseng
(
P. ginseng
), as a traditional Chinese medicine, is widely used to treat various cardiovascular diseases. Many studies have confirmed that
P. ginseng
and ginsenosides can regulate and improve mitochondrial dysfunction. Therefore, the role of mitochondria in various heart diseases and the protective effect of
P. ginseng
on heart diseases by regulating mitochondrial function were reviewed in this paper, aiming to gain new understanding of the mechanisms, and promote the clinical application of
P. ginseng
. Heart diseases have a high incidence and mortality rate, and seriously affect people’s quality of life. Mitochondria provide energy for the heart to function properly. The process of various heart diseases is closely related to mitochondrial dysfunction. Panax ginseng (P. ginseng), as a traditional Chinese medicine, is widely used to treat various cardiovascular diseases. Many studies have confirmed that P. ginseng and ginsenosides can regulate and improve mitochondrial dysfunction. Therefore, the role of mitochondria in various heart diseases and the protective effect of P. ginseng on heart diseases by regulating mitochondrial function were reviewed in this paper, aiming to gain new understanding of the mechanisms, and promote the clinical application of P. ginseng. Heart diseases have a high incidence and mortality rate, and seriously affect people's quality of life. Mitochondria provide energy for the heart to function properly. The process of various heart diseases is closely related to mitochondrial dysfunction. ( ), as a traditional Chinese medicine, is widely used to treat various cardiovascular diseases. Many studies have confirmed that and ginsenosides can regulate and improve mitochondrial dysfunction. Therefore, the role of mitochondria in various heart diseases and the protective effect of on heart diseases by regulating mitochondrial function were reviewed in this paper, aiming to gain new understanding of the mechanisms, and promote the clinical application of . Heart diseases have a high incidence and mortality rate, and seriously affect people's quality of life. Mitochondria provide energy for the heart to function properly. The process of various heart diseases is closely related to mitochondrial dysfunction. Panax ginseng (P. ginseng), as a traditional Chinese medicine, is widely used to treat various cardiovascular diseases. Many studies have confirmed that P. ginseng and ginsenosides can regulate and improve mitochondrial dysfunction. Therefore, the role of mitochondria in various heart diseases and the protective effect of P. ginseng on heart diseases by regulating mitochondrial function were reviewed in this paper, aiming to gain new understanding of the mechanisms, and promote the clinical application of P. ginseng.Heart diseases have a high incidence and mortality rate, and seriously affect people's quality of life. Mitochondria provide energy for the heart to function properly. The process of various heart diseases is closely related to mitochondrial dysfunction. Panax ginseng (P. ginseng), as a traditional Chinese medicine, is widely used to treat various cardiovascular diseases. Many studies have confirmed that P. ginseng and ginsenosides can regulate and improve mitochondrial dysfunction. Therefore, the role of mitochondria in various heart diseases and the protective effect of P. ginseng on heart diseases by regulating mitochondrial function were reviewed in this paper, aiming to gain new understanding of the mechanisms, and promote the clinical application of P. ginseng. |
Author | Yao, Fan Zhang, Bin Sun, Xiaobo Cao, Xinxin |
AuthorAffiliation | 1 Institute of Medicinal Plant Development , Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing , China 3 Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine , Beijing , China 4 Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease , State Administration of Traditional Chinese Medicine , Beijing , China 2 Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine , Ministry of Education , Beijing , China |
AuthorAffiliation_xml | – name: 4 Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease , State Administration of Traditional Chinese Medicine , Beijing , China – name: 1 Institute of Medicinal Plant Development , Peking Union Medical College and Chinese Academy of Medical Sciences , Beijing , China – name: 3 Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine , Beijing , China – name: 2 Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine , Ministry of Education , Beijing , China |
Author_xml | – sequence: 1 givenname: Xinxin surname: Cao fullname: Cao, Xinxin – sequence: 2 givenname: Fan surname: Yao fullname: Yao, Fan – sequence: 3 givenname: Bin surname: Zhang fullname: Zhang, Bin – sequence: 4 givenname: Xiaobo surname: Sun fullname: Sun, Xiaobo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37547332$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAUtFARLaV_gAPKkcsu_kgchwtCFS2ViugBThwsfzxvXGXtxXYQ_fc43aVqOeCLLXtmnue9eYmOQgyA0GuC14yJ4Z3bjSqtKaZsTSgRArNn6IRwzlaDIPTo0fkYneV8i-tiw8B4-wIds75re8boCfrxxZdoxhhs8mpq7F12czDFx9D40IygUmmsz6Ay5PfNTSwQygIsIyS1g7l404BzYEpuomtuVFC_m40PGcLmFXru1JTh7LCfou8Xn76df15df728Ov94vTItH8rKQce4oYxqzFthrOuZhs6AdV0HrR4EYMcd17pztO-JG7QYcPVlhFWcO8VO0dVe10Z1K3fJb1W6k1F5eX8R00ZWG95MIK2mCrhivSa45aIfKBcWazMwoR2wvmp92GvtZr0Fa6rdpKYnok9fgh_lJv6SZOkuZ6QqvD0opPhzhlzk1mcD06QCxDlLKmrrW04or9A3j4s9VPk7ngqge4BJMecE7gFCsFxiIO9jIJcYyEMMKkn8QzK-qGWk9cN--h_1D5hyuwY |
CitedBy_id | crossref_primary_10_3389_fphar_2024_1405545 crossref_primary_10_1007_s41348_024_01010_z crossref_primary_10_1016_j_phrs_2024_107164 crossref_primary_10_1038_s41598_023_45858_x crossref_primary_10_1016_j_phymed_2025_156587 |
Cites_doi | 10.1016/j.biopha.2018.09.002 10.2147/JIR.S348866 10.3390/molecules171112746 10.1091/mbc.E12-10-0721 10.1080/07853890.2017.1417631 10.3892/mmr.2015.3336 10.1016/j.jgr.2018.12.004 10.1126/scisignal.aaw3159 10.1038/cddis.2017.43 10.1007/s00395-020-0797-z 10.1083/jcb.200704110 10.1038/srep44579 10.1016/j.bbadis.2017.07.017 10.1161/CIRCRESAHA.121.318241 10.5483/bmbrep.2008.41.1.011 10.1093/emboj/21.7.1616 10.1016/j.molcel.2014.02.034 10.1016/j.cell.2010.06.007 10.3109/13880209.2011.554845 10.1152/ajpheart.2001.280.5.H2313 10.1007/bf02828182 10.1016/j.redox.2017.01.013 10.1016/j.yjmcc.2014.09.015 10.2174/156652408783769571 10.1016/j.freeradbiomed.2020.06.039 10.1159/000484578 10.1016/j.jacc.2019.10.009 10.1002/smll.201901787 10.3390/cells10092463 10.1016/s0092-8674(00)81476-2 10.1038/s41467-019-11636-5 10.15252/emmm.201708237 10.1007/s00109-015-1256-4 10.1155/2019/9825061 10.1042/bj3030461 10.1016/j.jgr.2016.12.005 10.1002/1873-3468.12964 10.1111/jcmm.15384 10.1016/j.phrs.2021.105843 10.13412/j.cnki.zyyl.2014.01.009 10.1113/JP271301 10.1691/ph.2019.8858 10.3390/cells9010150 10.1155/2013/454389 10.3389/fphar.2022.806216 10.3390/nu10030350 10.3389/fendo.2022.907757 10.21037/atm.2017.06.17 10.1016/S0968-0004(00)01740-0 10.3390/ijms161025234 10.3390/cells10061317 10.1155/2017/8214541 10.1111/bph.12516 10.1038/s41586-019-1296-y 10.2147/JIR.S310633 10.19403/.cnki.1671-1521.2020.05.001 10.1073/pnas.0837428100 10.1111/jdi.12250 10.5142/jgr.2013.37.283 10.1038/sj.cdd.4400781 10.1186/s12974-021-02334-5 10.1016/j.biopha.2020.109913 10.1161/CIRCRESAHA.118.313568 10.1161/CIRCHEARTFAILURE.110.957969 10.1016/j.bbamcr.2010.11.023 10.13241/j.cnki.pmb.2020.01.004 10.1002/glia.24235 10.1155/2016/6967853 10.3390/ijms21061905 10.2174/0929867324666170616101741 10.1083/jcb.200605138 10.1007/s11655-015-2433-6 10.1016/j.lfs.2011.02.011 10.1038/74994 10.1007/s10495-010-0526-4 10.1016/j.redox.2020.101674 10.1038/nrm3028 10.3390/molecules23040759 10.1159/000491655 10.1038/embor.2009.256 10.1146/annurev-physiol-021909-135929 10.1126/science.aab4138 10.1111/jcmm.12739 10.1155/2019/6046405 10.1038/s41598-017-00853-x 10.1038/cdd.2012.81 10.1016/j.ejphar.2017.08.023 10.3389/fphar.2020.00130 10.1007/s11897-017-0347-7 10.1371/journal.pone.0064229 10.1016/j.jep.2022.115715 10.1074/jbc.M114.619072 10.1155/2011/767930 10.1016/j.cardiores.2005.10.019 10.1016/j.biopha.2018.10.081 10.1073/pnas.1002178107 10.1016/j.jep.2011.03.015 10.1111/j.1365-2362.2010.02318.x 10.1074/jbc.C700083200 10.3390/ijms23063025 10.1074/jbc.M702824200 10.1038/nature10234 10.1016/j.mito.2015.11.003 10.1016/j.freeradbiomed.2015.05.027 10.1016/j.tcb.2007.07.009 10.1038/s41401-020-00518-y 10.3390/cells10030612 10.1002/jcb.29150 10.1073/pnas.0706441104 10.1016/j.fct.2010.03.018 10.1073/pnas.0911187107 10.1016/S0092-8674(03)00116-8 10.1155/2014/149195 10.1038/s41598-019-44922-9 10.3892/mmr.2019.10093 10.1016/j.ceca.2016.04.005 10.1016/S0005-2728(02)00278-5 10.1152/physrev.00030.2008 10.3389/fphar.2020.532041 10.1371/journal.pone.0144733 10.1038/35036035 10.3389/fphys.2018.00078 10.1093/cvr/cvab324 10.1016/j.pharmthera.2014.01.003 10.3390/ijms222413384 10.1038/nature12043 10.1074/jbc.M607279200 10.1101/gad.1126903 10.1371/journal.pone.0103628 10.3390/ijms20174279 10.1371/journal.pbio.1000298 10.1016/j.cellsig.2012.01.008 10.1097/FJC.0b013e31828f8d45 10.3390/cells10082103 10.1016/j.phymed.2010.06.012 10.1097/FJC.0000000000000752 10.1038/ncb1007-1102 10.1101/cshperspect.a011072 10.1139/cjpp-2014-0164 10.1056/NEJMra071667 10.3390/molecules28072928 10.1007/BF02896771 10.3969/j.issn.1672-3619.2021.03.002 10.5142/jgr.2012.36.2.119 10.1039/c5ra02432c 10.1055/s-1999-14034 10.3892/mmr.2018.9104 10.1016/j.mad.2020.111380 10.1016/j.semcdb.2019.05.029 10.1155/2013/817826 10.1016/j.jacc.2014.06.1151 10.3389/fcell.2019.00172 10.1021/acs.chemrev.5b00407 10.1631/jzus.B1400204 10.3390/ijms18071364 10.1074/jbc.M801680200 10.3390/biomedicines9121793 10.1111/1750-3841.15505 10.1126/science.1099320 10.1021/acs.jafc.9b05706 10.1111/obr.13164 10.1038/nrcardio.2017.35 10.1038/s41569-020-0403-y 10.1016/j.molcel.2005.02.003 10.1016/j.bbadis.2016.11.010 10.15252/embj.201593102 10.1007/s11010-012-1265-3 10.1007/s12272-019-01188-z 10.1016/j.bbabio.2010.02.016 10.1016/j.cell.2018.11.025 10.14348/molcells.2018.2277 10.1016/j.biopha.2019.109487 10.3321/j.issn:1001-5302.2009.03.020 10.1371/journal.pone.0070956 10.1016/j.yjmcc.2013.12.032 10.1172/JCI120849 10.1016/s0962-8924(98)01273-2 10.1042/0264-6021:3570593 10.1152/ajpheart.1994.267.2.h742 10.1016/j.cmet.2014.12.001 10.1016/j.lfs.2021.119716 10.1016/j.jgr.2020.02.004 10.1016/j.bcp.2008.11.009 10.1016/j.ddmec.2010.07.002 10.1538/expanim.16-0121 10.1054/ceca.2000.0121 10.1152/ajpheart.00368.2011 10.1016/j.semcancer.2017.04.008 10.1038/sj.emboj.7601963 10.1016/j.hlc.2014.02.009 10.4196/kjpp.2013.17.4.283 10.1152/ajpcell.00139.2004 10.1007/s00125-003-1311-5 10.1016/j.jgr.2015.12.001 10.2147/VHRM.S11681 10.1016/j.freeradbiomed.2018.09.019 10.1016/j.phymed.2021.153717 10.1242/jcs.185165 10.3389/fphys.2016.00479 10.1007/s11033-010-0558-4 10.1016/j.jep.2020.112792 10.1016/j.febslet.2010.02.022 10.1016/j.jgr.2014.12.001 10.1007/s10557-008-6129-4 10.3389/fcell.2022.849962 10.1155/2016/2483163 10.1039/c9ra05037j 10.1155/2019/3714508 10.1007/s11481-020-09952-5 10.1016/j.bbadis.2020.165768 |
ContentType | Journal Article |
Copyright | Copyright © 2023 Cao, Yao, Zhang and Sun. Copyright © 2023 Cao, Yao, Zhang and Sun. 2023 Cao, Yao, Zhang and Sun |
Copyright_xml | – notice: Copyright © 2023 Cao, Yao, Zhang and Sun. – notice: Copyright © 2023 Cao, Yao, Zhang and Sun. 2023 Cao, Yao, Zhang and Sun |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fphar.2023.1218803 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
DocumentTitleAlternate | Cao et al |
EISSN | 1663-9812 |
ExternalDocumentID | oai_doaj_org_article_db2ae6a37b1046879268d0bc938bfe37 PMC10399631 37547332 10_3389_fphar_2023_1218803 |
Genre | Journal Article Review |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 P2P PGMZT RNS RPM IAO IEA IHR IHW IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c469t-fe536c232b0648cdf73be5cedf55e4b98e0f6f6bb5f2771f9b890812c8da66fa3 |
IEDL.DBID | M48 |
ISSN | 1663-9812 |
IngestDate | Wed Aug 27 01:14:03 EDT 2025 Thu Aug 21 18:42:06 EDT 2025 Fri Jul 11 05:33:05 EDT 2025 Thu Jan 02 22:51:45 EST 2025 Tue Jul 01 02:53:10 EDT 2025 Thu Apr 24 22:50:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | ginsenosides mechanism Panax ginseng heart disease mitochondria |
Language | English |
License | Copyright © 2023 Cao, Yao, Zhang and Sun. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c469t-fe536c232b0648cdf73be5cedf55e4b98e0f6f6bb5f2771f9b890812c8da66fa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Reviewed by: Frederic Boal, Metabolic and Cardiovascular Research Institute, France Feifei Guo, China Academy of Chinese Medical Sciences, China Edited by: Guoliang Meng, Nantong University, China |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fphar.2023.1218803 |
PMID | 37547332 |
PQID | 2847346126 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_db2ae6a37b1046879268d0bc938bfe37 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10399631 proquest_miscellaneous_2847346126 pubmed_primary_37547332 crossref_primary_10_3389_fphar_2023_1218803 crossref_citationtrail_10_3389_fphar_2023_1218803 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-20 |
PublicationDateYYYYMMDD | 2023-07-20 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in pharmacology |
PublicationTitleAlternate | Front Pharmacol |
PublicationYear | 2023 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Aravinthan (B9) 2015; 39 Jeong (B70) 2008; 41 Yan (B186) 2014; 2014 Maes (B115) 2000; 27 Li (B94); 44 Allard (B5) 1994; 267 Drake (B46) 2017; 47 Tsutsumi (B162) 2011; 88 Kim (B77) 2010; 48 Xie (B183) 2007; 9 Moltedo (B121) 2019; 7 Song (B149) 2007; 178 Hamilton (B62) 2020; 115 Yang (B187) 2017; 8 Zeng (B198) 2015; 8 Cominacini (B36) 2015; 88 Li (B96); 47 Chen (B29) 2023; 300 Steudler (B150) 2022; 70 Tombo (B158) 2020; 158 Yu (B195) 2017; 7 Ai (B3) 2015; 5 Lopaschuk (B110) 2021; 128 Zhang (B203); 280 Brodmann (B21) 2020 Puri (B135) 2019; 10 Yu (B194) 2016; 20 Heusch (B66) 2020; 17 Wu (B181) 2011; 38 Vogel (B168) 2006; 175 Jin (B72) 2021; 42 Zuo (B215) 2018; 10 Toyama (B160) 2016; 351 Cárdenas (B26) 2011; 142 Zheng (B212) 2017; 66 Kroemer (B80) 2000; 6 Li (B100) 2018; 42 Liu (B104) 2020; 263 Goncalves (B55) 2015; 290 Lim (B102); 17 Zhang (B209) 2012; 365 Disatnik (B42) 2015; 93 Jones (B73) 2003; 100 Wu (B180) 2016; 35 Lee (B88) 2011; 301 Modesti (B120) 2021; 10 Wu (B179) 2022; 4 Pileggi (B134) 2021; 22 Wang (B174); 2013 Ho (B67) 2021; 10 Sun (B151); 11 Kowalczyk (B79) 2021; 22 Martinez (B117) 2010; 15 Adams (B1) 2001; 26 Chen (B32) 2013; 8 Nichols (B125) 1994; 303 Shi (B147) 2011; 49 Ashrafi (B10) 2013; 20 Osellame (B129) 2016; 129 Twig (B163) 2008; 27 Li (B98) 2016; 2016 Cui (B37) 2017; 7 Lee (B87) 2010; 40 Huang (B68) 2017; 814 Kaludercic (B74) 2013 Yu (B196) 2019; 75 Thompson (B156) 2020; 192 Voulgari (B169) 2010; 6 La Rovere (B85) 2016; 60 Kuwana (B83) 2005; 17 Li (B91) 2015; 94 Chen (B30) 2019; 120 Berridge (B17) 2000; 1 Wang (B175) 2015; 11 Green (B57) 2004; 305 Decuypere (B38) 2011; 1813 Dombi (B43) 2017; 25 Elgendy (B47) 2019; 124 Liu (B107); 172 Losóna (B111) 2013; 24 Wang (B176); 8 Kuida (B81) 1998; 94 Youle (B192) 2011; 12 Zhou (B213) 2018; 128 Tsushima (B161) 2020; 43 Hayyan (B64) 2016; 116 Guo (B60) 2011; 4 Li (B99) 2009; 34 Lee (B86) 2020; 11 Ratan (B139) 2021; 45 Li (B93); 9 Li (B95) 2014; 30 Wang (B177) 2008; 22 Yu (B193) 2015; 16 Zhang (B210); 21 Nolfi-Donegan (B126) 2020; 37 Novak (B127) 2010; 11 Song (B148) 2021; 10 Liesa (B101) 2009; 89 Zhang (B200); 49 Aon (B8) 2010; 1797 Faccenda (B48) 2020; 15 Zhang (B206); 109 Wang (B170) 2016; 40 Schneider (B146) 2019; 9 Huynh (B69) 2014; 142 Green (B56) 1998; 8924 Zhang (B201); 23 Tow (B159) 2022; 118 Zhang (B205) 2016; 2016 Alderton (B4) 2001; 357 Pankiv (B131) 2007; 282 Narendra (B123) 2010; 8 Newmeyer (B124) 2003; 112 Brookes (B22) 2004; 287 Guan (B59) 2002; 22 Vásquez-Trincado (B165) 2016; 594 Sarraf (B144) 2013; 496 Wang (B172) 2019; 2019 Li (B92); 1863 Chen (B33) 2022; 13 Ray (B140) 2012; 24 Fonseca (B52) 2019; 570 Ruprecht (B143) 2019; 176 Cai (B24) 2020; 9 Qi (B136) 2020; 29 Sun (B152); 5 Liu (B108) 2002; 22 Collins (B35) 2002; 21 Ma (B114) 2014; 9 Palaniyandi (B130) 2010; 7 Sun (B154) 2023; 28 Chen (B28) 2014; 54 Vives-Bauza (B167) 2010; 107 Ding (B41) 2021; 10 Yoo (B191) 2018; 41 Maffei Facino (B116) 1999; 65 Guan (B58) 2018; 18 Qin (B137) 2019; 67 Xia (B182) 2011; 2011 Baek (B13) 2012; 36 Ferro (B51) 2020; 98 Moris (B122) 2017; 5 Baburina (B11) 2021; 9 Kim (B76) 2016; 2016 Adams (B2) 2003; 17 Lo (B109) 2017; 18 Dorn (B45) 2015; 78 Boulton (B20) 2022; 10 Yellon (B189) 2007; 357 An (B6) 2019; 9 Kayama (B75) 2015; 16 Peng (B132) 2022; 13 Oh (B128) 2019; 20 Kuroda (B82) 2010; 107 Zhang (B207) 2007; 104 Zhang (B208) 2013; 62 Bhatti (B19) 2017; 1863 Jiang (B71) 2019; 15 Li (B97); 23 Bäcklund (B12) 2004; 47 Xu (B184) 2019; 120 Fan (B49) 2020; 44 Rovira-Llopis (B142) 2017; 11 Martucciello (B118) 2020; 21 Wu (B178) 2019; 2019 Tian (B157) 2017; 2017 Bugger (B23) 2020; 1866 Zhang (B199); 15 Delbridge (B39) 2017; 14 Feng (B50) 2018 Hall (B61) 2014; 171 Zhou (B214) 2011; 135 Liu (B106); 92 Yi (B190) 2010; 17 Yuan (B197) 2019; 74 Viola (B166) 2014; 23 Baughman (B16) 2011; 476 Xue (B185) 2020; 85 Betzenhauser (B18) 2008; 283 Luo (B113) 2013; 2013 Frey (B53) 2002; 1555 Sun (B153) 2019; 109 Chang (B27) 2007; 282 Campos (B25) 2016; 7 Kwong (B84) 2014; 21 Rasola (B138) 2010; 584 Angelova (B7) 2018; 592 Mensah (B119) 2019; 74 Pesant (B133) 2006; 69 Taguchi (B155) 2007; 282 Wang (B173) 2021; 14 Zhao (B211) 2014; 18 Harris (B63) 2000; 7 Chen (B31) 2001; 280 Zhang (B204); 18 Baines (B14) 2009; 72 Chistiakov (B34) 2018; 50 Hernandez-Resendiz (B65) 2020; 24 Dong (B44) 2016; 26 Van der Bliek (B164) 2013; 5 Wang (B171) 2012; 17 Rizzuto (B141) 2008; 8 Luo (B112) 2015; 10 Yardeni (B188) 2019; 12 Bartosz (B15) 2009; 77 Zhang (B202); 2019 Li (B90) 2020; 125 Kiyuna (B78) 2018; 129 Scherz-Shouval (B145) 2007; 17 Dietl (B40) 2017; 14 Fuster (B54) 2014; 64 Liu (B105) 2014; 5 Lepretti (B89) 2018; 10 Lim (B103); 37 |
References_xml | – volume: 109 start-page: 254 year: 2019 ident: B153 article-title: Ginsenoside Rb3 protects cardiomyocytes against hypoxia/reoxygenation injury via activating the antioxidation signaling pathway of PERK/Nrf2/HMOX1 publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2018.09.002 – volume: 15 start-page: 71 ident: B199 article-title: Ginsenoside Rb1 protects against diabetic cardiomyopathy by regulating the adipocytokine pathway publication-title: J. Inflamm. Res. doi: 10.2147/JIR.S348866 – volume: 17 start-page: 12746 year: 2012 ident: B171 article-title: Total ginsenosides of radix ginseng modulates tricarboxylic acid cycle protein expression to enhance cardiac energy metabolism in ischemic rat heart tissues publication-title: Molecules doi: 10.3390/molecules171112746 – volume: 24 start-page: 659 year: 2013 ident: B111 article-title: Fis1, mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission publication-title: Mol. Biol. Cell. doi: 10.1091/mbc.E12-10-0721 – volume: 50 start-page: 121 year: 2018 ident: B34 article-title: The role of mitochondrial dysfunction in cardiovascular disease: A brief review publication-title: Ann. Med. doi: 10.1080/07853890.2017.1417631 – volume: 11 start-page: 4518 year: 2015 ident: B175 article-title: Ginsenoside Rg3 attenuates myocardial ischemia/reperfusion injury via Akt/endothelial nitric oxide synthase signaling and the B-cell lymphoma/B-cell lymphoma-associated X protein pathway publication-title: Mol. Med. Rep. doi: 10.3892/mmr.2015.3336 – volume: 44 start-page: 258 year: 2020 ident: B49 article-title: The role of ginsenoside Rb1, a potential natural glutathione reductase agonist, in preventing oxidative stress-induced apoptosis of H9C2 cells publication-title: J. Ginseng Res. doi: 10.1016/j.jgr.2018.12.004 – volume: 12 start-page: eaaw3159 year: 2019 ident: B188 article-title: Host mitochondria influence gut microbiome diversity: A role for ROS publication-title: Sci. Signal. doi: 10.1126/scisignal.aaw3159 – volume: 8 start-page: 26255 year: 2017 ident: B187 article-title: Ginsenoside Rg5 increases cardiomyocyte resistance to ischemic injury through regulation of mitochondrial hexokinase-II and dynamin-related protein 1 publication-title: Cell. Death Dis. doi: 10.1038/cddis.2017.43 – volume: 115 start-page: 38 year: 2020 ident: B62 article-title: Increased RyR2 activity is exacerbated by calcium leak-induced mitochondrial ROS publication-title: Basic Res. Cardiol. doi: 10.1007/s00395-020-0797-z – volume: 178 start-page: 749 year: 2007 ident: B149 article-title: OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L publication-title: J. Cell. Biol. doi: 10.1083/jcb.200704110 – volume: 7 start-page: 44579 year: 2017 ident: B37 article-title: Ginsenoside Rb1 protects against ischemia/reperfusion-induced myocardial injury via energy metabolism regulation mediated by RhoA signaling pathway publication-title: Sci. Rep. doi: 10.1038/srep44579 – volume: 1863 start-page: 2835 ident: B92 article-title: Succinate accumulation impairs cardiac pyruvate dehydrogenase activity through GRP91-dependent and independent signaling pathways: Therapeutic effects of ginsenoside Rb1 publication-title: Biochim. Biophys. Acta - Mol. Basis Dis. doi: 10.1016/j.bbadis.2017.07.017 – volume: 128 start-page: 1487 year: 2021 ident: B110 article-title: Cardiac energy metabolism in heart failure publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.121.318241 – volume: 41 start-page: 11 year: 2008 ident: B70 article-title: The role of mitochondria in apoptosis publication-title: BMB Rep. doi: 10.5483/bmbrep.2008.41.1.011 – volume: 21 start-page: 1616 year: 2002 ident: B35 article-title: Mitochondria are morphologically and functionally heterogeneous within cells publication-title: Collins EMBO J. doi: 10.1093/emboj/21.7.1616 – volume: 54 start-page: 362 year: 2014 ident: B28 article-title: A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy publication-title: Mol. Cell. doi: 10.1016/j.molcel.2014.02.034 – volume: 142 start-page: 270 year: 2011 ident: B26 article-title: Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria publication-title: NIH Public Access doi: 10.1016/j.cell.2010.06.007 – volume: 49 start-page: 900 year: 2011 ident: B147 article-title: Ginsenoside Rb3 ameliorates myocardial ischemia-reperfusion injury in rats publication-title: Pharm. Biol. doi: 10.3109/13880209.2011.554845 – volume: 280 start-page: H2313 year: 2001 ident: B31 article-title: Overexpression of Bcl-2 attenuates apoptosis and protects against myocardial I/R injury in transgenic mice publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.2001.280.5.H2313 – volume: 22 start-page: 212 year: 2002 ident: B59 article-title: Effect of ginsenoside-Rb 1 on cardiomyocyte apoptosis after ischemia and reperfusion in rats publication-title: J. Huazhong Univ. Sci. Technol. - Med. Sci. doi: 10.1007/bf02828182 – volume: 11 start-page: 637 year: 2017 ident: B142 article-title: Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications publication-title: Redox Biol. doi: 10.1016/j.redox.2017.01.013 – volume: 78 start-page: 123 year: 2015 ident: B45 article-title: Functional implications of mitofusin 2-mediated mitochondrial-SR tethering publication-title: J. Mol. Cell. Cardiol. doi: 10.1016/j.yjmcc.2014.09.015 – volume: 8 start-page: 119 year: 2008 ident: B141 article-title: Ca2+ signaling, mitochondria and cell death publication-title: Curr. Mol. Med. doi: 10.2174/156652408783769571 – volume: 158 start-page: 181 year: 2020 ident: B158 article-title: Cardiac ischemia/reperfusion stress reduces inner mitochondrial membrane protein (mitofilin) levels during early reperfusion publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2020.06.039 – volume: 44 start-page: 21 ident: B94 article-title: Ginsenoside Rg1 protects cardiomyocytes against hypoxia/reoxygenation injury via activation of Nrf2/HO-1 signaling and inhibition of JNK publication-title: Cell. Physiol. biochem. doi: 10.1159/000484578 – volume: 74 start-page: 2529 year: 2019 ident: B119 article-title: The global burden of cardiovascular diseases and risk factors: 2020 and beyond publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2019.10.009 – volume: 18 start-page: 1744 year: 2014 ident: B211 article-title: Myocardial protection of Ginseng fruit saponins in streptozotocin-induced diabetic rats publication-title: Chin. J. Lab. Diagn – volume: 15 start-page: 19017877 year: 2019 ident: B71 article-title: Electrochemical monitoring of paclitaxel-induced ROS release from mitochondria inside single cells publication-title: Small doi: 10.1002/smll.201901787 – volume: 10 start-page: 2463 year: 2021 ident: B41 article-title: Mitochondrial biogenesis, mitochondrial dynamics, and mitophagy in the maturation of cardiomyocytes publication-title: Cells doi: 10.3390/cells10092463 – volume: 94 start-page: 325 year: 1998 ident: B81 article-title: Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9 publication-title: Cell. doi: 10.1016/s0092-8674(00)81476-2 – volume: 10 start-page: 3645 year: 2019 ident: B135 article-title: Mul1 restrains Parkin-mediated mitophagy in mature neurons by maintaining ER-mitochondrial contacts publication-title: Nat. Commun. doi: 10.1038/s41467-019-11636-5 – volume: 10 start-page: 82377 year: 2018 ident: B215 article-title: CRTH2 promotes endoplasmic reticulum stress‐induced cardiomyocyte apoptosis through m‐calpain publication-title: EMBO Mol. Med. doi: 10.15252/emmm.201708237 – volume: 93 start-page: 279 year: 2015 ident: B42 article-title: New therapeutics to modulate mitochondrial dynamics and mitophagy in cardiac diseases publication-title: J. Mol. Med. doi: 10.1007/s00109-015-1256-4 – volume: 2019 start-page: 9825061 year: 2019 ident: B178 article-title: Mitophagy, mitochondrial dynamics, and homeostasis in cardiovascular aging publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2019/9825061 – volume: 303 start-page: 461 year: 1994 ident: B125 article-title: Comparison of the effects of Ca2+, adenine nucleotides and pH on the kinetic properties of mitochondrial NAD(+)-isocitrate dehydrogenase and oxoglutarate dehydrogenase from the yeast Saccharomyces cerevisiae and rat heart publication-title: Biochem. J. doi: 10.1042/bj3030461 – volume: 42 start-page: 1 year: 2018 ident: B100 article-title: Ginseng and obesity publication-title: J. Ginseng Res. doi: 10.1016/j.jgr.2016.12.005 – volume: 592 start-page: 692 year: 2018 ident: B7 article-title: Role of mitochondrial ROS in the brain: From physiology to neurodegeneration publication-title: FEBS Lett. doi: 10.1002/1873-3468.12964 – volume: 24 start-page: 6571 year: 2020 ident: B65 article-title: Targeting mitochondrial fusion and fission proteins for cardioprotection publication-title: J. Cell. Mol. Med. doi: 10.1111/jcmm.15384 – volume: 172 start-page: 105843 ident: B107 article-title: Rg3 promotes the SUMOylation of SERCA2a and corrects cardiac dysfunction in heart failure publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2021.105843 – volume: 30 start-page: 25 year: 2014 ident: B95 article-title: Effects of ginsenoside Rg1 on high glucose-induced myocardial hypertrophy publication-title: China Acad. J. Electron. Publ. House doi: 10.13412/j.cnki.zyyl.2014.01.009 – volume: 594 start-page: 509 year: 2016 ident: B165 article-title: Mitochondrial dynamics, mitophagy and cardiovascular disease publication-title: J. Physiol. doi: 10.1113/JP271301 – volume: 74 start-page: 157 year: 2019 ident: B197 article-title: Ginsenoside Rg1 inhibits myocardial ischaemia and reperfusion injury via HIF-1α-ERK signalling pathways in a diabetic rat model publication-title: Pharmazie doi: 10.1691/ph.2019.8858 – volume: 9 start-page: 150 year: 2020 ident: B24 article-title: Mitophagy in alzheimer’s disease and other age-related neurodegenerative diseases publication-title: Cells doi: 10.3390/cells9010150 – volume: 8 start-page: 14497 year: 2015 ident: B198 article-title: Ginsenoside Rd mitigates myocardial ischemia-reperfusion injury via Nrf2/HO-1 signaling pathway publication-title: Int. J. Clin. Exp. Med. – volume: 2013 start-page: 454389 ident: B174 article-title: Ginsenoside Rb1 reduces isoproterenol-induced cardiomyocytes apoptosis in vitro and in vivo publication-title: Evidence-based Complement. Altern. Med. doi: 10.1155/2013/454389 – volume: 13 start-page: 806216 year: 2022 ident: B33 article-title: Inhibition of myocardial cell apoptosis is important mechanism for ginsenoside in the limitation of myocardial ischemia/reperfusion injury publication-title: Front. Pharmacol. doi: 10.3389/fphar.2022.806216 – volume: 10 start-page: 1 year: 2018 ident: B89 article-title: Omega-3 fatty acids and insulin resistance: Focus on the regulation of mitochondria and endoplasmic reticulum stress publication-title: Nutrients doi: 10.3390/nu10030350 – volume: 13 start-page: 907757 year: 2022 ident: B132 article-title: Signaling pathways related to oxidative stress in diabetic cardiomyopathy publication-title: Front. Endocrinol. (Lausanne). doi: 10.3389/fendo.2022.907757 – volume: 5 start-page: 324 year: 2017 ident: B122 article-title: The role of reactive oxygen species in myocardial redox signaling and regulation publication-title: Ann. Transl. Med. doi: 10.21037/atm.2017.06.17 – volume: 26 start-page: 61 year: 2001 ident: B1 article-title: Life-or-death decisions by the Bcl-2 protein family publication-title: Trends biochem. Sci. doi: 10.1016/S0968-0004(00)01740-0 – volume: 16 start-page: 25234 year: 2015 ident: B75 article-title: Diabetic cardiovascular disease induced by oxidative stress publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms161025234 – volume: 10 start-page: 1317 year: 2021 ident: B120 article-title: Mitochondrial Ca 2 + signaling in health, disease and therapy publication-title: Cells doi: 10.3390/cells10061317 – volume: 2017 start-page: 8214541 year: 2017 ident: B157 article-title: Roles and mechanisms of herbal medicine for diabetic cardiomyopathy: Current status and perspective publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2017/8214541 – volume: 171 start-page: 1890 year: 2014 ident: B61 article-title: Mitochondrial fusion and fission proteins: Novel therapeutic targets for combating cardiovascular disease publication-title: Br. J. Pharmacol. doi: 10.1111/bph.12516 – volume: 570 start-page: E34 year: 2019 ident: B52 article-title: Mitochondrial fission requires DRP1 but not dynamins publication-title: Nature doi: 10.1038/s41586-019-1296-y – volume: 14 start-page: 1789 year: 2021 ident: B173 article-title: Dual activity of ginsenoside rb1 in hypertrophic cardiomyocytes and activated macrophages: Implications for the therapeutic intervention of cardiac hypertrophy publication-title: J. Inflamm. Res. doi: 10.2147/JIR.S310633 – volume: 5 start-page: 2 ident: B152 article-title: Protective effect of Ginseng fruit saponins combined with Total flavonoidsof murraya paniculata leaves on diabetic cardiomyopathy in rats publication-title: Ginseng Res. doi: 10.19403/.cnki.1671-1521.2020.05.001 – volume: 100 start-page: 4891 year: 2003 ident: B73 article-title: Endothelial nitric oxide synthase overexpression attenuates congestive heart failure in mice publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0837428100 – volume: 5 start-page: 623 year: 2014 ident: B105 article-title: Diabetic cardiomyopathy and its mechanisms: Role of oxidative stress and damage publication-title: J. Diabetes Investig. doi: 10.1111/jdi.12250 – volume: 37 start-page: 283 ident: B103 article-title: Ginsenoside-Re ameliorates ischemia and reperfusion injury in the heart: A hemodynamics approach publication-title: J. Ginseng Res. doi: 10.5142/jgr.2013.37.283 – volume: 7 start-page: 1182 year: 2000 ident: B63 article-title: The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability publication-title: Cell. Death Differ. doi: 10.1038/sj.cdd.4400781 – volume: 18 start-page: 297 ident: B204 article-title: Mitophagy in neurological disorders publication-title: J. Neuroinflammation doi: 10.1186/s12974-021-02334-5 – volume: 125 start-page: 109913 year: 2020 ident: B90 article-title: Ginsenoside Rb1 attenuates cardiomyocyte apoptosis induced by myocardial ischemia reperfusion injury through mTOR signal pathway publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2020.109913 – volume: 124 start-page: 1520 year: 2019 ident: B47 article-title: Medical therapy for heart failure caused by ischemic heart disease publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.118.313568 – volume: 4 start-page: 79 year: 2011 ident: B60 article-title: Ginseng inhibits cardiomyocyte hypertrophy and heart failure via nhe-1 inhibition and attenuation of calcineurin activation publication-title: Circ. Hear. Fail. doi: 10.1161/CIRCHEARTFAILURE.110.957969 – volume: 1813 start-page: 1003 year: 2011 ident: B38 article-title: The IP3 receptor-mitochondria connection in apoptosis and autophagy publication-title: Biochim. Biophys. Acta - Mol. Cell. Res. doi: 10.1016/j.bbamcr.2010.11.023 – volume: 29 start-page: 19 year: 2020 ident: B136 article-title: Ginsenoside Rb1 alleviates diabetic cardiomyopathy through up-regulating PGC-1α publication-title: Prog. Mod. Biomed. doi: 10.13241/j.cnki.pmb.2020.01.004 – volume: 70 start-page: 2045 year: 2022 ident: B150 article-title: Autoimmune neuroinflammation triggers mitochondrial oxidation in oligodendrocytes publication-title: Glia doi: 10.1002/glia.24235 – volume: 2016 start-page: 6967853 year: 2016 ident: B205 article-title: Ginsenoside Rg3 improves cardiac function after myocardial ischemia/reperfusion via attenuating apoptosis and inflammation publication-title: Evidence-based Complement. Altern. Med. doi: 10.1155/2016/6967853 – volume: 21 start-page: 1905 year: 2020 ident: B118 article-title: Natural products targeting ER stress, and the functional link to mitochondria publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21061905 – volume: 25 start-page: 5597 year: 2017 ident: B43 article-title: Modulating mitophagy in mitochondrial disease publication-title: Curr. Med. Chem. doi: 10.2174/0929867324666170616101741 – volume: 175 start-page: 237 year: 2006 ident: B168 article-title: Dynamic subcompartmentalization of the mitochondrial inner membrane publication-title: J. Cell. Biol. doi: 10.1083/jcb.200605138 – volume: 2016 start-page: 1 year: 2016 ident: B98 article-title: Cardioprotection of ginsenoside Rb1 against ischemia/reperfusion injury is associated with mitochondrial permeability transition pore opening inhibition publication-title: Chin. J. Integr. Med. doi: 10.1007/s11655-015-2433-6 – volume: 88 start-page: 725 year: 2011 ident: B162 article-title: Compound K, a metabolite of ginsenosides, induces cardiac protection mediated nitric oxide via Akt/PI3K pathway publication-title: Life Sci. doi: 10.1016/j.lfs.2011.02.011 – volume: 6 start-page: 513 year: 2000 ident: B80 article-title: Mitochondrial control of cell death publication-title: Nat. Med. doi: 10.1038/74994 – volume: 15 start-page: 1480 year: 2010 ident: B117 article-title: Calpain and caspase processing of caspase-12 contribute to the ER stress-induced cell death pathway in differentiated PC12 cells publication-title: Apoptosis doi: 10.1007/s10495-010-0526-4 – volume: 37 start-page: 101674 year: 2020 ident: B126 article-title: Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement publication-title: Redox Biol. doi: 10.1016/j.redox.2020.101674 – volume: 12 start-page: 9 year: 2011 ident: B192 article-title: Mechanisms of mitophagy publication-title: Nat. Rev. Mol. Cell. Biol. doi: 10.1038/nrm3028 – volume: 23 start-page: 759 ident: B97 article-title: Intraconversion of polar ginsenosides, their transformation into less-polar ginsenosides, and ginsenoside acetylation in ginseng flowers upon baking and steaming publication-title: Molecules doi: 10.3390/molecules23040759 – volume: 47 start-page: 2589 ident: B96 article-title: Compound K inhibits autophagy-mediated apoptosis through activation of the PI3K-Akt signaling pathway thus protecting against ischemia/reperfusion injury publication-title: Cell. Physiol. biochem. doi: 10.1159/000491655 – volume: 11 start-page: 45 year: 2010 ident: B127 article-title: Nix is a selective autophagy receptor for mitochondrial clearance publication-title: EMBO Rep. doi: 10.1038/embor.2009.256 – volume: 72 start-page: 61 year: 2009 ident: B14 article-title: The cardiac mitochondrion: Nexus of stress publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev-physiol-021909-135929 – volume: 351 start-page: 275 year: 2016 ident: B160 article-title: Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress publication-title: Response Energy Stress doi: 10.1126/science.aab4138 – volume: 20 start-page: 623 year: 2016 ident: B194 article-title: Ginsenoside Rg1 ameliorates diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress-induced apoptosis in a streptozotocin-induced diabetes rat model publication-title: J. Cell. Mol. Med. doi: 10.1111/jcmm.12739 – volume: 2019 start-page: 6046405 ident: B202 article-title: The effect of ginsenoside RB1, diazoxide, and 5-hydroxydecanoate on hypoxia-reoxygenation injury of H9C2 cardiomyocytes publication-title: Evidence-based Complement. Altern. Med. doi: 10.1155/2019/6046405 – volume: 7 start-page: 880 year: 2017 ident: B195 article-title: MIEF1/2 function as adaptors to recruit Drp1 to mitochondria and regulate the association of Drp1 with Mff publication-title: Sci. Rep. doi: 10.1038/s41598-017-00853-x – volume: 20 start-page: 31 year: 2013 ident: B10 article-title: The pathways of mitophagy for quality control and clearance of mitochondria publication-title: Cell. Death Differ. doi: 10.1038/cdd.2012.81 – volume: 814 start-page: 151 year: 2017 ident: B68 article-title: Rutin alleviates diabetic cardiomyopathy and improves cardiac function in diabetic ApoEknockout mice publication-title: Eur. J. Pharmacol. doi: 10.1016/j.ejphar.2017.08.023 – volume: 11 start-page: 130 year: 2020 ident: B86 article-title: Relationship between ginsenoside Rg3 and metabolic syndrome publication-title: Front. Pharmacol. doi: 10.3389/fphar.2020.00130 – volume: 14 start-page: 338 year: 2017 ident: B40 article-title: Targeting mitochondrial calcium handling and reactive oxygen species in heart failure publication-title: Curr. Heart Fail. Rep. doi: 10.1007/s11897-017-0347-7 – volume: 8 start-page: e64229 year: 2013 ident: B32 article-title: Cardiac peroxisome proliferator-activated receptor δ (PPARδ) as a new target for increased contractility without altering heart rate publication-title: PLoS One doi: 10.1371/journal.pone.0064229 – volume: 300 start-page: 115715 year: 2023 ident: B29 article-title: Panax ginseng against myocardial ischemia/reperfusion injury: A review of preclinical evidence and potential mechanisms publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2022.115715 – volume: 290 start-page: 209 year: 2015 ident: B55 article-title: Sites of superoxide and hydrogen peroxide production by muscle mitochondria assessed ex vivo under conditions mimicking rest and exercise publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.619072 – volume: 2011 start-page: 767930 year: 2011 ident: B182 article-title: Ginsenoside Rb1 preconditioning enhances eNOS expression and attenuates myocardial ischemia/reperfusion injury in diabetic rats publication-title: J. Biomed. Biotechnol. doi: 10.1155/2011/767930 – volume: 69 start-page: 440 year: 2006 ident: B133 article-title: Peroxisome proliferator-activated receptor delta (PPARdelta) activation protects H9c2 cardiomyoblasts from oxidative stress-induced apoptosis publication-title: Cardiovasc. Res. doi: 10.1016/j.cardiores.2005.10.019 – volume: 109 start-page: 1016 ident: B206 article-title: Ginsenoside Rd contributes the attenuation of cardiac hypertrophy in vivo and in vitro publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2018.10.081 – volume: 107 start-page: 15565 year: 2010 ident: B82 article-title: NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1002178107 – volume: 135 start-page: 287 year: 2011 ident: B214 article-title: Ginseng protects rodent hearts from acute myocardial ischemia-reperfusion injury through GR/ER-activated RISK pathway in an endothelial NOS-dependent mechanism publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2011.03.015 – volume: 40 start-page: 692 year: 2010 ident: B87 article-title: Oxidative stress and inflammation modulate peroxisome proliferator-activated receptors with regional discrepancy in diabetic heart publication-title: Eur. J. Clin. Invest. doi: 10.1111/j.1365-2362.2010.02318.x – volume: 282 start-page: 21583 year: 2007 ident: B27 article-title: Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology publication-title: J. Biol. Chem. doi: 10.1074/jbc.C700083200 – volume: 23 start-page: 3025 ident: B201 article-title: Mitochondrial Ca2+ homeostasis: Emerging roles and clinical significance in cardiac remodeling publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms23063025 – volume: 282 start-page: 24131 year: 2007 ident: B131 article-title: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy publication-title: J. Biol. Chem. doi: 10.1074/jbc.M702824200 – volume: 476 start-page: 341 year: 2011 ident: B16 article-title: Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter publication-title: Nature doi: 10.1038/nature10234 – volume: 26 start-page: 7 year: 2016 ident: B44 article-title: Rg1 prevents myocardial hypoxia/reoxygenation injury by regulating mitochondrial dynamics imbalance via modulation of glutamate dehydrogenase and mitofusin 2 publication-title: Mitochondrion doi: 10.1016/j.mito.2015.11.003 – volume: 88 start-page: 233 year: 2015 ident: B36 article-title: Endoplasmic reticulum stress and Nrf2 signaling in cardiovascular diseases publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2015.05.027 – volume: 17 start-page: 422 year: 2007 ident: B145 article-title: ROS, mitochondria and the regulation of autophagy publication-title: Trends Cell. Biol. doi: 10.1016/j.tcb.2007.07.009 – volume: 42 start-page: 655 year: 2021 ident: B72 article-title: Drp1-dependent mitochondrial fission in cardiovascular disease publication-title: Acta Pharmacol. Sin. doi: 10.1038/s41401-020-00518-y – volume: 10 start-page: 612 year: 2021 ident: B148 article-title: Nicotinamide treatment facilitates mitochondrial fission through Drp1 activation mediated by SIRT1-induced changes in cellular levels of cAMP and Ca2 publication-title: Cells doi: 10.3390/cells10030612 – volume: 120 start-page: 18388 year: 2019 ident: B184 article-title: Ginsenoside Rg1 protects H9c2 cells against nutritional stress-induced injury via aldolase/AMPK/PINK1 signalling publication-title: J. Cell. Biochem. doi: 10.1002/jcb.29150 – volume: 104 start-page: 18526 year: 2007 ident: B207 article-title: Structural basis for recruitment of mitochondrial fission complexes by Fis1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0706441104 – volume: 48 start-page: 1516 year: 2010 ident: B77 article-title: The effects of ginseng total saponin, panaxadiol and panaxatriol on ischemia/reperfusion injury in isolated rat heart publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2010.03.018 – volume: 107 start-page: 378 year: 2010 ident: B167 article-title: PINK1-dependent recruitment of Parkin to mitochondria in mitophagy publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0911187107 – volume: 112 start-page: 481 year: 2003 ident: B124 article-title: Mitochondria: Releasing power for life and unleashing the machineries of death publication-title: Cell. doi: 10.1016/S0092-8674(03)00116-8 – volume: 2014 start-page: 149195 year: 2014 ident: B186 article-title: Ginsenoside Rb1 protects neonatal rat cardiomyocytes from hypoxia/ischemia induced apoptosis and inhibits activation of the mitochondrial apoptotic pathway publication-title: Evidence-based Complement. Altern. Med. doi: 10.1155/2014/149195 – volume: 9 start-page: 8492 year: 2019 ident: B146 article-title: Single organelle analysis to characterize mitochondrial function and crosstalk during viral infection publication-title: Sci. Rep. doi: 10.1038/s41598-019-44922-9 – volume: 49 start-page: 4019 ident: B200 article-title: Ginsenoside Rg5 induces apoptosis in human esophageal cancer cells through the phosphoinositide-3 kinase/protein kinase B signaling pathway publication-title: Mol. Med. Rep. doi: 10.3892/mmr.2019.10093 – volume: 60 start-page: 74 year: 2016 ident: B85 article-title: Intracellular Ca2+ signaling and Ca2+ microdomains in the control of cell survival, apoptosis and autophagy publication-title: Cell. Calcium doi: 10.1016/j.ceca.2016.04.005 – volume: 1555 start-page: 196 year: 2002 ident: B53 article-title: Insight into mitochondrial structure and function from electron tomography publication-title: Biochim. Biophys. Acta - Bioenerg. doi: 10.1016/S0005-2728(02)00278-5 – volume: 89 start-page: 799 year: 2009 ident: B101 article-title: Mitochondrial dynamics in mammalian health and disease publication-title: Physiol. Rev. doi: 10.1152/physrev.00030.2008 – volume: 11 start-page: 532041 ident: B151 article-title: Ginsenoside Re treatment attenuates myocardial hypoxia/reoxygenation injury by inhibiting HIF-1α ubiquitination publication-title: Front. Pharmacol. doi: 10.3389/fphar.2020.532041 – volume: 10 start-page: 01447333 year: 2015 ident: B112 article-title: The long-term consumption of ginseng extract reduces the susceptibility of intermediate-aged hearts to acute ischemia reperfusion injury publication-title: PLoS One doi: 10.1371/journal.pone.0144733 – volume: 1 start-page: 11 year: 2000 ident: B17 article-title: The versatility and universality of calcium signalling publication-title: Nat. Rev. Mol. Cell. Biol. doi: 10.1038/35036035 – volume: 9 start-page: 78 ident: B93 article-title: Ginsenoside Rg1 ameliorates rat myocardial ischemia-reperfusion injury by modulating energy metabolism pathways publication-title: Front. Physiol. doi: 10.3389/fphys.2018.00078 – volume: 118 start-page: 2819 year: 2022 ident: B159 article-title: SR-mitochondria crosstalk shapes Ca signalling to impact pathophenotype in disease models marked by dysregulated intracellular Ca release publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvab324 – volume: 142 start-page: 375 year: 2014 ident: B69 article-title: Diabetic cardiomyopathy: Mechanisms and new treatment strategies targeting antioxidant signaling pathways publication-title: Pharmacol. Ther. doi: 10.1016/j.pharmthera.2014.01.003 – volume: 22 start-page: 13384 year: 2021 ident: B79 article-title: Mitochondrial oxidative stress—A causative factor and therapeutic target in many diseases publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms222413384 – volume: 496 start-page: 372 year: 2013 ident: B144 article-title: Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization publication-title: Nature doi: 10.1038/nature12043 – volume: 282 start-page: 11521 year: 2007 ident: B155 article-title: Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission publication-title: J. Biol. Chem. doi: 10.1074/jbc.M607279200 – volume: 17 start-page: 2481 year: 2003 ident: B2 article-title: Ways of dying: Multiple pathways to apoptosis publication-title: Genes. Dev. doi: 10.1101/gad.1126903 – volume: 9 start-page: 1036288 year: 2014 ident: B114 article-title: Ginsenoside Rb3 protects cardiomyocytes against ischemia-reperfusion injury via the inhibition of JNK-mediated NF-κB pathway: A mouse cardiomyocyte model publication-title: PLoS One doi: 10.1371/journal.pone.0103628 – volume: 20 start-page: 4279 year: 2019 ident: B128 article-title: Ginsenoside compound K induces ros-mediated apoptosis and autophagic inhibition in human neuroblastoma cells in vitro and in vivo publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20174279 – volume: 8 start-page: e1000298 year: 2010 ident: B123 article-title: PINK1 is selectively stabilized on impaired mitochondria to activate Parkin publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000298 – volume: 24 start-page: 981 year: 2012 ident: B140 article-title: Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling publication-title: Cell. Signal. doi: 10.1016/j.cellsig.2012.01.008 – volume: 62 start-page: 50 year: 2013 ident: B208 article-title: The ginsenoside Rg1 prevents transverse aortic constriction-induced left ventricular hypertrophy and cardiac dysfunction by inhibiting fibrosis and enhancing angiogenesis publication-title: J. Cardiovasc. Pharmacol. doi: 10.1097/FJC.0b013e31828f8d45 – volume: 10 start-page: 2103 year: 2021 ident: B67 article-title: Role of irisin in myocardial infarction, heart failure, and cardiac hypertrophy publication-title: Cells doi: 10.3390/cells10082103 – volume: 17 start-page: 1006 year: 2010 ident: B190 article-title: Total ginsenosides increase coronary perfusion flow in isolated rat hearts through activation of PI3K/Akt-eNOS signaling publication-title: Phytomedicine doi: 10.1016/j.phymed.2010.06.012 – volume: 75 start-page: 91 year: 2019 ident: B196 article-title: Ginsenoside Re preserves cardiac function and ameliorates left ventricular remodeling in a rat model of myocardial infarction publication-title: J. Cardiovasc. Pharmacol. doi: 10.1097/FJC.0000000000000752 – volume: 9 start-page: 1102 year: 2007 ident: B183 article-title: Autophagosome formation: Core machinery and adaptations publication-title: Nat. Cell. Biol. doi: 10.1038/ncb1007-1102 – volume: 5 start-page: a011072 year: 2013 ident: B164 article-title: Mechanisms of mitochondrial fission and fusion publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a011072 – volume: 94 start-page: 97 year: 2015 ident: B91 article-title: Analyzing the anti-ischemia–reperfusion injury effects of ginsenoside Rb1 mediated through the inhibition of p38α MAPK publication-title: Can. J. Physiol. Pharmacol. doi: 10.1139/cjpp-2014-0164 – volume: 357 start-page: 1121 year: 2007 ident: B189 article-title: Myocardial reperfusion injury publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra071667 – volume: 28 start-page: 2928 year: 2023 ident: B154 article-title: Discrepancy study of the chemical constituents of panax ginseng from different growth environments with UPLC-MS-based metabolomics strategy publication-title: Molecules doi: 10.3390/molecules28072928 – volume: 22 start-page: 305 year: 2002 ident: B108 article-title: Effect of ginsenoside Re on cardiomyocyte apoptosis and expression of bcl-2/bax gene after ischemia and reperfusion in rats publication-title: J. Huazhong Univ. Sci. Technol. doi: 10.1007/BF02896771 – volume: 21 start-page: 261 ident: B210 article-title: The effects of ginsenoside Rb1 on cardiac function and cardiocyte apoptosis in diabetes rats publication-title: J. Trop. Med. Mar. doi: 10.3969/j.issn.1672-3619.2021.03.002 – volume: 36 start-page: 119 year: 2012 ident: B13 article-title: Recent methodology in Ginseng analysis publication-title: J. Ginseng Res. doi: 10.5142/jgr.2012.36.2.119 – volume: 5 start-page: 26346 year: 2015 ident: B3 article-title: Ginsenoside Rb1 prevents hypoxia-reoxygenation-induced apoptosis in H9c2 cardiomyocytes via an estrogen receptor-dependent crosstalk among the Akt, JNK, and ERK 1/2 pathways using a label-free quantitative proteomics analysis publication-title: RSC Adv. doi: 10.1039/c5ra02432c – volume: 65 start-page: 614 year: 1999 ident: B116 article-title: Panax ginseng administration in the rat prevents myocardial ischemia-reperfusion damage induced by hyperbaric oxygen: Evidence for an antioxidant intervention publication-title: Planta Med. doi: 10.1055/s-1999-14034 – start-page: 1990 volume-title: Global Burden of Cardiovascular Diseases and Risk Factors year: 2020 ident: B21 – volume: 18 start-page: 1600 year: 2018 ident: B58 article-title: Induction of apoptosis by Bigelovii A through inhibition of NF-?B activity publication-title: Mol. Med. Rep. doi: 10.3892/mmr.2018.9104 – volume: 192 start-page: 111380 year: 2020 ident: B156 article-title: Targeting ER stress and calpain activation to reverse age-dependent mitochondrial damage in the heart publication-title: Mech. Ageing Dev. doi: 10.1016/j.mad.2020.111380 – volume: 98 start-page: 129 year: 2020 ident: B51 article-title: Autophagy and mitophagy in cancer metabolic remodelling publication-title: Semin. Cell. Dev. Biol. doi: 10.1016/j.semcdb.2019.05.029 – volume: 2013 start-page: 7826 year: 2013 ident: B113 article-title: Effectiveness of panax ginseng on acute myocardial ischemia reperfusion injury was abolished by flutamide via endogenous testosterone-mediated akt pathway. Evidence-based Complement publication-title: Altern. Med. doi: 10.1155/2013/817826 – volume: 64 start-page: 520 year: 2014 ident: B54 article-title: Global burden of cardiovascular disease: Time to implement feasible strategies and to monitor results publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2014.06.1151 – volume: 7 start-page: 172 year: 2019 ident: B121 article-title: The mitochondria–endoplasmic reticulum contacts and their critical role in aging and age-associated diseases publication-title: Front. Cell. Dev. Biol. doi: 10.3389/fcell.2019.00172 – volume: 116 start-page: 3029 year: 2016 ident: B64 article-title: Superoxide ion: Generation and chemical implications publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00407 – volume: 16 start-page: 344 year: 2015 ident: B193 article-title: Ginsenoside Rg1 ameliorates oxidative stress and myocardial apoptosis in streptozotocin-induced diabetic rats publication-title: J. Zhejiang Univ. Sci. B doi: 10.1631/jzus.B1400204 – volume: 18 start-page: 1364 year: 2017 ident: B109 article-title: Ginsenoside Rh2 improves cardiac fibrosis via PPARδ–STAT3 signaling in type 1-like diabetic rats publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms18071364 – volume: 283 start-page: 21579 year: 2008 ident: B18 article-title: ATP modulation of Ca2+ release by type-2 and type-3 inositol (1, 4, 5)-triphosphate receptors: Differing ATP sensitivities and molecular determinants of action publication-title: J. Biol. Chem. doi: 10.1074/jbc.M801680200 – volume: 9 start-page: 1793 year: 2021 ident: B11 article-title: The identification of prohibitin in the rat heart mitochondria in heart failure publication-title: Biomedicines doi: 10.3390/biomedicines9121793 – volume: 85 start-page: 4039 year: 2020 ident: B185 article-title: Ginsenoside Rb2 alleviates myocardial ischemia/reperfusion injury in rats through SIRT1 activation publication-title: J. Food Sci. doi: 10.1111/1750-3841.15505 – volume: 305 start-page: 626 year: 2004 ident: B57 article-title: The pathophysiology of mitochondrial cell death publication-title: Science doi: 10.1126/science.1099320 – volume: 67 start-page: 14074 year: 2019 ident: B137 article-title: Ginsenoside-Rb1 improved diabetic cardiomyopathy through regulating calcium signaling by alleviating protein O-GlcNAcylation publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.9b05706 – volume: 22 start-page: e13164 year: 2021 ident: B134 article-title: The lifecycle of skeletal muscle mitochondria in obesity publication-title: Obes. Rev. doi: 10.1111/obr.13164 – volume: 14 start-page: 412 year: 2017 ident: B39 article-title: Myocardial stress and autophagy: Mechanisms and potential therapies publication-title: Nat. Rev. Cardiol. doi: 10.1038/nrcardio.2017.35 – volume: 17 start-page: 773 year: 2020 ident: B66 article-title: Myocardial ischaemia–reperfusion injury and cardioprotection in perspective publication-title: Nat. Rev. Cardiol. doi: 10.1038/s41569-020-0403-y – volume-title: The structure-activity relationship of ginsenosides on hypoxia-reoxygenation induced apoptosis of cardiomyocytes year: 2018 ident: B50 – volume: 17 start-page: 525 year: 2005 ident: B83 article-title: BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly publication-title: Mol. Cell. doi: 10.1016/j.molcel.2005.02.003 – volume: 1863 start-page: 1066 year: 2017 ident: B19 article-title: Mitochondrial dysfunction and oxidative stress in metabolic disorders — a step towards mitochondria based therapeutic strategies publication-title: Biochim. Biophys. Acta - Mol. Basis Dis. doi: 10.1016/j.bbadis.2016.11.010 – volume: 35 start-page: 1368 year: 2016 ident: B180 article-title: FUNDC 1 regulates mitochondrial dynamics at the ER –mitochondrial contact site under hypoxic conditions publication-title: EMBO J. doi: 10.15252/embj.201593102 – volume: 365 start-page: 243 year: 2012 ident: B209 article-title: Ginsenoside Rg1 inhibits autophagy in H9c2 cardiomyocytes exposed to hypoxia/reoxygenation publication-title: Mol. Cell. Biochem. doi: 10.1007/s11010-012-1265-3 – volume: 43 start-page: 286 year: 2020 ident: B161 article-title: Emerging evidence for crosstalk between Nrf2 and mitochondria in physiological homeostasis and in heart disease publication-title: Arch. Pharm. Res. doi: 10.1007/s12272-019-01188-z – volume: 1797 start-page: 865 year: 2010 ident: B8 article-title: Redox-optimized ROS balance: A unifying hypothesis publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2010.02.016 – volume: 176 start-page: 435 year: 2019 ident: B143 article-title: The molecular mechanism of transport by the mitochondrial ADP/ATP carrier publication-title: Cell. doi: 10.1016/j.cell.2018.11.025 – volume: 41 start-page: 18 year: 2018 ident: B191 article-title: A molecular approach to mitophagy and mitochondrial dynamics publication-title: Mol. Cells doi: 10.14348/molcells.2018.2277 – volume: 120 start-page: 109487 year: 2019 ident: B30 article-title: Ginsenoside Rb3 regulates energy metabolism and apoptosis in cardiomyocytes via activating PPARα pathway publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2019.109487 – volume: 34 start-page: 324 year: 2009 ident: B99 article-title: Effect of ginseng total saponins combined with Coptis berberine on plasma BNP and myocardial cell calcium concentration in chronic heart failure rats publication-title: China J. Chin. Materia Medica doi: 10.3321/j.issn:1001-5302.2009.03.020 – volume: 8 start-page: 709566 ident: B176 article-title: Ginsenoside Rd attenuates myocardial ischemia/reperfusion injury via akt/GSK-3β signaling and inhibition of the mitochondria-dependent apoptotic pathway publication-title: PLoS One doi: 10.1371/journal.pone.0070956 – start-page: 34 year: 2013 ident: B74 article-title: Monoamine oxidases as sources of oxidants in the heart publication-title: J. Mol. Cell. Cardiol. doi: 10.1016/j.yjmcc.2013.12.032 – volume: 128 start-page: 3716 year: 2018 ident: B213 article-title: Mitochondrial dysfunction in pathophysiology of heart failure publication-title: J. Clin. Invest. doi: 10.1172/JCI120849 – volume: 8924 start-page: 267 year: 1998 ident: B56 article-title: The central executioners of apoptosis: Caspases or mitochondria? publication-title: Cell. Biol. doi: 10.1016/s0962-8924(98)01273-2 – volume: 357 start-page: 593 year: 2001 ident: B4 article-title: Nitric oxide synthases: Structure, function and inhibition publication-title: Biochem. J. doi: 10.1042/0264-6021:3570593 – volume: 267 start-page: H742 year: 1994 ident: B5 article-title: Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts publication-title: Am. J. Physiol. - Hear. Circ. Physiol. doi: 10.1152/ajpheart.1994.267.2.h742 – volume: 21 start-page: 206 year: 2014 ident: B84 article-title: Physiological and pathological roles of the mitochondrial permeability transition pore in the heart publication-title: Cell. Metab. doi: 10.1016/j.cmet.2014.12.001 – volume: 280 start-page: 119716 ident: B203 article-title: Silent information regulator 1 suppresses epithelial-to-mesenchymal transition in lung cancer cells via its regulation of mitochondria status publication-title: Life Sci. doi: 10.1016/j.lfs.2021.119716 – volume: 45 start-page: 199 year: 2021 ident: B139 article-title: Pharmacological potential of ginseng and its major component ginsenosides publication-title: J. Ginseng Res. doi: 10.1016/j.jgr.2020.02.004 – volume: 77 start-page: 1303 year: 2009 ident: B15 article-title: Reactive oxygen species: Destroyers or messengers? publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2008.11.009 – volume: 7 start-page: e95 year: 2010 ident: B130 article-title: Regulation of mitochondrial processes: A target for heart failure publication-title: Drug Discov. Today Dis. Mech. doi: 10.1016/j.ddmec.2010.07.002 – volume: 66 start-page: 217 year: 2017 ident: B212 article-title: Ginsenoside Rb1 improves cardiac function and remodeling in heart failure publication-title: Exp. Anim. doi: 10.1538/expanim.16-0121 – volume: 27 start-page: 257 year: 2000 ident: B115 article-title: Differential modulation of inositol 1,4,5,-trisphosphate receptor type 1 and type 3 by ATP publication-title: Cell. Calcium doi: 10.1054/ceca.2000.0121 – volume: 301 start-page: 1924 year: 2011 ident: B88 article-title: Mitochondrial autophagy by bnip3 involves drp1-mediated mitochondrial fission and recruitment of parkin in cardiac myocytes publication-title: Am. J. Physiol. - Hear. Circ. Physiol. doi: 10.1152/ajpheart.00368.2011 – volume: 47 start-page: 110 year: 2017 ident: B46 article-title: Expanding perspectives on the significance of mitophagy in cancer publication-title: Semin. Cancer Biol. doi: 10.1016/j.semcancer.2017.04.008 – volume: 27 start-page: 433 year: 2008 ident: B163 article-title: Fission and selective fusion govern mitochondrial segregation and elimination by autophagy publication-title: EMBO J. doi: 10.1038/sj.emboj.7601963 – volume: 23 start-page: 602 year: 2014 ident: B166 article-title: How does calcium regulate mitochondrial energetics in the heart? - new insights publication-title: Hear. Lung Circ. doi: 10.1016/j.hlc.2014.02.009 – volume: 17 start-page: 283 ident: B102 article-title: Korean red ginseng induced cardioprotection against myocardial ischemia in Guinea pig publication-title: Korean J. Physiol. Pharmacol. doi: 10.4196/kjpp.2013.17.4.283 – volume: 287 start-page: C817 year: 2004 ident: B22 article-title: Calcium, ATP, and ROS: A mitochondrial love-hate triangle publication-title: Am. J. Physiol. - Cell. Physiol. doi: 10.1152/ajpcell.00139.2004 – volume: 47 start-page: 325 year: 2004 ident: B12 article-title: Sustained cardiomyocyte apoptosis and left ventricular remodelling after myocardial infarction in experimental diabetes publication-title: Diabetologia doi: 10.1007/s00125-003-1311-5 – volume: 40 start-page: 382 year: 2016 ident: B170 article-title: Rapid characterization of ginsenosides in the roots and rhizomes of panax ginseng by UPLC-DAD-QTOF-MS/MS and simultaneous determination of 19 ginsenosides by HPLC-ESI-MS publication-title: J. Ginseng Res. doi: 10.1016/j.jgr.2015.12.001 – volume: 4 start-page: 16 year: 2022 ident: B179 article-title: Rational use of drugs for heart disease is important publication-title: China Acad. J. Electron. Publ. House – volume: 6 start-page: 883 year: 2010 ident: B169 article-title: Diabetic cardiomyopathy: From the pathophysiology of the cardiac myocytes to current diagnosis and management strategies publication-title: Vasc. Health Risk Manag. doi: 10.2147/VHRM.S11681 – volume: 129 start-page: 155 year: 2018 ident: B78 article-title: Targeting mitochondrial dysfunction and oxidative stress in heart failure: Challenges and opportunities publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2018.09.019 – volume: 92 start-page: 153717 ident: B106 article-title: A comprehensive review on the phytochemistry, pharmacokinetics, and antidiabetic effect of Ginseng publication-title: Phytomedicine doi: 10.1016/j.phymed.2021.153717 – volume: 129 start-page: 2170 year: 2016 ident: B129 article-title: Cooperative and independent roles of the Drp1 adaptors Mff, MiD49 and MiD51 in mitochondrial fission publication-title: J. Cell. Sci. doi: 10.1242/jcs.185165 – volume: 7 start-page: 479 year: 2016 ident: B25 article-title: Mitochondrial quality control in cardiac diseases publication-title: Front. Physiol. doi: 10.3389/fphys.2016.00479 – volume: 38 start-page: 4327 year: 2011 ident: B181 article-title: Protective effect of ginsenoside Rb1 against myocardial ischemia/reperfusion injury in streptozotocin-induced diabetic rats publication-title: Mol. Biol. Rep. doi: 10.1007/s11033-010-0558-4 – volume: 263 start-page: 112792 year: 2020 ident: B104 article-title: Traditional uses, chemical diversity and biological activities of panax L. (araliaceae): A review publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2020.112792 – volume: 584 start-page: 1989 year: 2010 ident: B138 article-title: Signal transduction to the permeability transition pore publication-title: FEBS Lett. doi: 10.1016/j.febslet.2010.02.022 – volume: 39 start-page: 206 year: 2015 ident: B9 article-title: Ginseng total saponin attenuates myocardial injury via anti-oxidative and anti-inflammatory properties publication-title: J. Ginseng Res. doi: 10.1016/j.jgr.2014.12.001 – volume: 22 start-page: 443 year: 2008 ident: B177 article-title: Ginsenoside Rb1 preconditioning protects against myocardial infarction after regional ischemia and reperfusion by activation of phosphatidylinositol-3- kinase signal transduction publication-title: Cardiovasc. Drugs Ther. doi: 10.1007/s10557-008-6129-4 – volume: 10 start-page: 849962 year: 2022 ident: B20 article-title: Mitochondrial fission and fusion in tumor progression to metastasis publication-title: Front. Cell. Dev. Biol. doi: 10.3389/fcell.2022.849962 – volume: 2016 start-page: 2483163 year: 2016 ident: B76 article-title: Therapeutic strategies for oxidative stress-related cardiovascular diseases: Removal of excess reactive oxygen species in adult stem cells publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2016/2483163 – volume: 9 start-page: 25107 year: 2019 ident: B6 article-title: Ginsenoside Rk1 inhibits cell proliferation and promotes apoptosis in lung squamous cell carcinoma by calcium signaling pathway publication-title: RSC Adv. doi: 10.1039/c9ra05037j – volume: 2019 start-page: 3714508 year: 2019 ident: B172 article-title: Ginsenoside Re improves isoproterenol-induced myocardial fibrosis and heart failure in rats publication-title: Evidence-based Complement. Altern. Med. doi: 10.1155/2019/3714508 – volume: 15 start-page: 565 year: 2020 ident: B48 article-title: Mitochondria regulate inflammatory paracrine signalling in neurodegeneration publication-title: J. Neuroimmune Pharmacol. doi: 10.1007/s11481-020-09952-5 – volume: 1866 start-page: 165768 year: 2020 ident: B23 article-title: Mitochondrial ROS in myocardial ischemia reperfusion and remodeling publication-title: Biochim. Biophys. Acta - Mol. Basis Dis. doi: 10.1016/j.bbadis.2020.165768 |
SSID | ssj0000399364 |
Score | 2.3576334 |
SecondaryResourceType | review_article |
Snippet | Heart diseases have a high incidence and mortality rate, and seriously affect people’s quality of life. Mitochondria provide energy for the heart to function... Heart diseases have a high incidence and mortality rate, and seriously affect people's quality of life. Mitochondria provide energy for the heart to function... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1218803 |
SubjectTerms | ginsenosides heart disease mechanism mitochondria Panax ginseng Pharmacology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp1xKH2nrtikqlFwaE9t6uremNIRCyh4SCPQgJGumCRRtyDrQ_ffR2M5mt5T2kqstY6FvRjPSzHzD2AdpWhtljaUGE0opYtY5qLA0MXqQqCpEiuiefNfHZ_LbuTpfa_VFOWEjPfC4cAcxNB60FyZQNNKattE2VqFrhQ0IYqgjzzZv7TA17MFkd7Ucq2TyKaw9wKsLT_yfjSBChSy1YsMSDYT9f_My_0yWXLM-R0_Y48lt5J_H6T5ljyA9Y3uzkXd6uc9P78uoFvt8j8_uGamXz9mPk6y3eZ9LkcSNx-WCzBlBwi8Tp57WPZ8iNYtPfDbvKYUoD1wrzuJT4gefI5_55H9zuqmG9HOHnR19Pf1yXE5dFcouH4X7EkEJ3WVHKmRvxHYRjQigOoioFMjQElQadQgKG2NqbINts9_QdDZ6rdGLF2wrzRO8YrwVyhNhoa-1lV2lPGCoKMNTgNURoWD13Qq7bqIcp84Xv1w-ehAqbkDFESpuQqVgH1ffXI2EG_8cfUjArUYSWfbwIIuQm0TI_U-ECvb-DnaXlYsiJj7B_GbhyHYLmZ1AXbCXoxisfkW9g40QTcHshoBszGXzTbq8GAi8KfyeN7769UPM_g3bphWh--amesu2-usb2M2OUh_eDTpxC0SGFGg priority: 102 providerName: Directory of Open Access Journals |
Title | Mitochondrial dysfunction in heart diseases: Potential therapeutic effects of Panax ginseng |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37547332 https://www.proquest.com/docview/2847346126 https://pubmed.ncbi.nlm.nih.gov/PMC10399631 https://doaj.org/article/db2ae6a37b1046879268d0bc938bfe37 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZpeuml9F2nbVCh5NK4ta2nCyE0pSEUtuwhC4EehGRJSSDI6dqB7L-vxtZusiHtoVdbwkbfjGZGM_oGoQ9U1NLS0ufcCZNTYqPOucLnwlrtqGeF95DRnfzkRzP644SdbKBlu6O0gN29oR30k5rNLz5d_17sR4Xfg4gz2tvP_vJMA7VnRYArIQokeYAeRsskoKPBJLn7w84M1pjT8e7MX6au2aeBxv8-3_NuCeUtm3T4BD1OziT-OqL_FG248AztTEc26sUuPr65XNXt4h08veGpXjxHvyZRm-MCBAtCiO2iAyMHQOHzgKHTdY9T_qb7gqdtD4VFceCtK1s4lYPg1uOpDvoaw_m1C6cv0Ozw-_G3ozz1WsibGCD3uXeM8Ca6Vyb6KLKxXhDjWOOsZ8xRUwOA3HNjmK-EKH1tZB29iaqRVnPuNXmJNkMb3GuEa8I00BjqkkvaFEw7bwqo-yROcutdhsrlCqsmEZFDP4wLFQMSQEUNqChARSVUMvRxNedypOH45-gDAG41Eii0hwft_FQljVTWVNrx-KcG0txS1BWXtjBNTaTxjogMvV_CrqLKQR5FB9dedQosOqHRNeQZejWKwepT0FFYEFJlSK4JyNq_rL8J52cDrTck5eN2WG79_9Q36BGsA5w9V8VbtNnPr9y76DT1Zns4bNge9OEPZ8kckA |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondrial+dysfunction+in+heart+diseases%3A+Potential+therapeutic+effects+of+Panax+ginseng&rft.jtitle=Frontiers+in+pharmacology&rft.au=Cao%2C+Xinxin&rft.au=Yao%2C+Fan&rft.au=Zhang%2C+Bin&rft.au=Sun%2C+Xiaobo&rft.date=2023-07-20&rft.pub=Frontiers+Media+S.A&rft.eissn=1663-9812&rft.volume=14&rft_id=info:doi/10.3389%2Ffphar.2023.1218803&rft.externalDocID=PMC10399631 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1663-9812&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1663-9812&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1663-9812&client=summon |