Performance Evaluation of an Autonomously Driven Agricultural Vehicle in an Orchard Environment
To address the problems of inefficient agricultural production and labor shortages, there has been active research to develop autonomously driven agricultural machines, using advanced sensors and ICT technology. Autonomously driven speed sprayers can also reduce accidents such as the pesticide poiso...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 22; no. 1; p. 114 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
24.12.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | To address the problems of inefficient agricultural production and labor shortages, there has been active research to develop autonomously driven agricultural machines, using advanced sensors and ICT technology. Autonomously driven speed sprayers can also reduce accidents such as the pesticide poisoning of farmers, and vehicle overturn that frequently occur during spraying work in orchards. To develop a commercial, autonomously driven speed sprayer, we developed a prototype of an autonomously driven agricultural vehicle, and conducted performance evaluations in an orchard environment. A prototype of the agricultural vehicle was created using a rubber-tracked vehicle equipped with two AC motors. A prototype of the autonomous driving hardware consisted of a GNSS module, a motion sensor, an embedded board, and an LTE module, and it was made for less than $1000. Additional software, including a sensor fusion algorithm for positioning and a path-tracking algorithm for autonomous driving, were implemented. Then, the performance of the autonomous driving agricultural vehicle was evaluated based on two trajectories in an apple farm. The results of the field test determined the RMS, and the maximums of the path-following errors were 0.10 m, 0.34 m, respectively. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s22010114 |