CDK6 is essential for mesenchymal stem cell proliferation and adipocyte differentiation
Overweight or obesity poses a significant risk of many obesity-related metabolic diseases. Among all the potential new therapies, stem cell-based treatments hold great promise for treating many obesity-related metabolic diseases. However, the mechanisms regulating adipocyte stem cells/progenitors (p...
Saved in:
Published in | Frontiers in molecular biosciences Vol. 10; p. 1146047 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
16.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Overweight or obesity poses a significant risk of many obesity-related metabolic diseases. Among all the potential new therapies, stem cell-based treatments hold great promise for treating many obesity-related metabolic diseases. However, the mechanisms regulating adipocyte stem cells/progenitors (precursors) are unknown. The aim of this study is to investigate if CDK6 is required for mesenchymal stem cell proliferation and adipocyte differentiation.
Cyclin-dependent kinase 6 (
) mouse models together with stem cells derived from stromal vascular fraction (SVF) or mouse embryonic fibroblasts (MEFs) of
mutant mice were used to determine if CDK6 is required for mesenchymal stem cell proliferation and adipocyte differentiation.
We found that mice with a kinase inactive CDK6 mutants (
) had fewer precursor residents in the SVF of adult white adipose tissue (WAT). Stem cells from the SVF or MEFs of
mice had defects in proliferation and differentiation into the functional fat cells. In contrast, mice with a constitutively active kinase CDK6 mutant (
) had the opposite traits. Ablation of RUNX1 in both mature and precursor
cells, reversed the phenotypes.
These results represent a novel role of CDK6 in regulating precursor numbers, proliferation, and differentiation, suggesting a potential pharmacological intervention for using CDK6 inhibitors in the treatment of obesity-related metabolic diseases. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Weinan Zhou, University of Illinois at Urbana-Champaign, United States Edited by: Åke Sjöholm, Gävle Hospital, Sweden Reviewed by: Giovanni Luca, University of Perugia, Italy Kristen E. Boyle, University of Colorado Anschutz Medical Campus, United States |
ISSN: | 2296-889X 2296-889X |
DOI: | 10.3389/fmolb.2023.1146047 |