Control Strategies and Performance Assessment of Upper-Limb TMR Prostheses: A Review
The evolution of technological and surgical techniques has made it possible to obtain an even more intuitive control of multiple joints using advanced prosthetic systems. Targeted Muscle Reinnervation (TMR) is considered to be an innovative and relevant surgical technique for improving the prostheti...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 21; no. 6; p. 1953 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
10.03.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The evolution of technological and surgical techniques has made it possible to obtain an even more intuitive control of multiple joints using advanced prosthetic systems. Targeted Muscle Reinnervation (TMR) is considered to be an innovative and relevant surgical technique for improving the prosthetic control for people with different amputation levels of the limb. Indeed, TMR surgery makes it possible to obtain reinnervated areas that act as biological amplifiers of the motor control. On the technological side, a great deal of research has been conducted in order to evaluate various types of myoelectric prosthetic control strategies, whether direct control or pattern recognition-based control. In the literature, different control performance metrics, which have been evaluated on TMR subjects, have been introduced, but no accepted reference standard defines the better strategy for evaluating the prosthetic control. Indeed, the presence of several evaluation tests that are based on different metrics makes it difficult the definition of standard guidelines for comprehending the potentiality of the proposed control systems. Additionally, there is a lack of evidence about the comparison of different evaluation approaches or the presence of guidelines on the most suitable test to proceed for a TMR patients case study. Thus, this review aims at identifying these limitations by examining the several studies in the literature on TMR subjects, with different amputation levels, and proposing a standard method for evaluating the control performance metrics. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 These authors contributed equally to this work. |
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s21061953 |