Dynamic Parameter Identification for a Manipulator with Joint Torque Sensors Based on an Improved Experimental Design

As the foundation of model control, robot dynamics is crucial. However, a robot is a complex multi-input–multi-output system. System noise seriously affects parameter identification results, thereby inevitably requiring us to conduct signal processing to extract useful signals from chaotic noise. In...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 19; no. 10; p. 2248
Main Authors Jia, Jidong, Zhang, Minglu, Zang, Xizhe, Zhang, He, Zhao, Jie
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 15.05.2019
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:As the foundation of model control, robot dynamics is crucial. However, a robot is a complex multi-input–multi-output system. System noise seriously affects parameter identification results, thereby inevitably requiring us to conduct signal processing to extract useful signals from chaotic noise. In this research, the dynamic parameters were identified on the basis of the proposed multi-criteria embedded optimization design method, to obtain the optimal excitation signal and then use maximum likelihood estimation for parameter identification. Considering the movement coupling characteristics of the multi-axis, experiments were based on a two degrees-of-freedom manipulator with joint torque sensors. Simulation and experimental results showed that the proposed method can reasonably resolve the problem of mutual opposition within a single criterion and improve the identification robustness in comparison with other optimization criteria. The mean relative standard deviation was 0.04 and 0.3 lower in the identified parameters than in F1 and F3, respectively, thus signifying that noise is effectively alleviated. In addition, validation experimental curves were close to the estimation model, and the average of root mean square (RMS) is 0.038, thereby confirming the accuracy of the proposed method.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s19102248